应用化学 ›› 2023, Vol. 40 ›› Issue (12): 1601-1612.DOI: 10.19894/j.issn.1000-0518.230201

• 稀土 •    下一篇

稀土元素改性钒基固溶体储氢合金研究进展

任权兵1, 钟鸣1, 郑波1, 冯兰1, 丁南2(), 尹东明2(), 程勇2, 王立民2   

  1. 1.江西江钨浩运科技有限公司,南昌 330095
    2.中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,长春 130022
  • 收稿日期:2023-07-12 接受日期:2023-10-23 出版日期:2023-12-01 发布日期:2024-01-03
  • 通讯作者: 丁南,尹东明
  • 基金资助:
    国家重点研发计划(2021YFB4000604);吉林省科技发展计划项目(20230201125GX)

Research Progress on Rare Earth Element Modified V-Based Solid Solution Hydrogen Storage Alloys

Quan-Bing REN1, Ming ZHONG1, Bo ZHENG1, Lan FENG1, Nan DING2(), Dong-Ming YIN2(), Yong CHENG2, Li-Min WANG2   

  1. 1.Jiangxi Jiangwu Haoyun High-tech Co. ?,Ltd. ,Nanchang 330095,China
    2.State Key Laboratory of Rare Earth Resources Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2023-07-12 Accepted:2023-10-23 Published:2023-12-01 Online:2024-01-03
  • Contact: Nan DING,Dong-Ming YIN
  • About author:dingnan@ciac.ac.cn
    dmyin@ciac.ac.cn
  • Supported by:
    the National Key R&D Program of China(2021YFB4000604);the Key R&D Projects of Jilin Provincial Science and Technology Development Plan(20230201125GX)

摘要:

钒基固溶体储氢合金具有体心立方(BCC)结构,储氢质量分数在3.8%以上,充放电容量为1052 mA·h/g,优于AB2和AB5等系列合金,并且在常温常压下表现出较高的氢溶解度和扩散系数,因此在氢储运系统以及氢能源供应等领域具有广阔的应用前景,但钒基固溶体合金存在着活化难度大、放氢条件苛刻、循环寿命短以及对氧敏感易氧化等问题。研究表明,稀土对多种固态储氢材料均有很好的改性作用,将稀土元素通过元素替代或掺杂的方式加入到钒基固溶体合金中,有助于生成高活性的稀土或稀土氧化物第二相,可明显改善材料的吸放氢热力学、循环稳定性以及抗毒化性质,同时可减少材料内的氧含量,提高材料的活化特性。电化学性能方面,稀土元素的添加能显著提升合金电极的循环稳定性、耐腐蚀能力以及高倍率放电性能。因此,稀土元素取代是实现钒基固溶体储氢材料实际应用的一项行之有效的方法。本文报道了近30年稀土改性钒基固溶体储氢合金的研究现状,重点总结了稀土元素的作用机制,并对今后重点研究方向进行了展望。

关键词: 钒基固溶体合金, 稀土元素, 储氢性能

Abstract:

V-based solid solution hydrogen storage alloys possess BCC structures and have the weight hydrogen storage capacity of above 3.8% and the charge/discharge capacity of 1052 mA·h/g, which is superior to series alloys such as AB2 type and AB5 type. They exhibit high hydrogen solubility and diffusion coefficients at ambient temperature and pressure, therefore, and have a broad application prospect in the field of hydrogen storage and transport system as well as hydrogen energy supply. However, V-based solid solution alloys suffer from difficult activation, harsh hydrogen release conditions, short cycle life and oxygen sensitivity and oxidation. Studies have shown that rare earths have a positive effect on modifying various solid-state hydrogen storage materials. The inclusion of rare earth elements in V-based solid solution alloys through elemental substitution or doping produces a vigorously active second phase of rare earths or rare earth oxides, substantially enhancing the material's capacity for hydrogen absorption and desorption, cycling durability, and anti-toxicity characteristics. Simultaneously, it decreases the oxygen content and enhances the activity properties of materials. In terms of electrochemical performance, the addition of rare earth elements can significantly improve the cycle stability, corrosion resistance and high rate discharge performance of the alloy electrode. Therefore, rare earth element substitution is a well-established method for achieving practical applications of V-based solid solution hydrogen storage materials. This report presents the recent research status of rare earth-modified V-based solid solution hydrogen storage alloys, with a focus on summarizing the rare earth elements' mechanism of action and providing an outlook for future key research directions.

Key words: Vanadium-based solid solution alloys, Rare earth element, Hydrogen storage performance

中图分类号: