应用化学 ›› 2023, Vol. 40 ›› Issue (12): 1601-1612.DOI: 10.19894/j.issn.1000-0518.230201
• 稀土 • 下一篇
任权兵1, 钟鸣1, 郑波1, 冯兰1, 丁南2(), 尹东明2(), 程勇2, 王立民2
收稿日期:
2023-07-12
接受日期:
2023-10-23
出版日期:
2023-12-01
发布日期:
2024-01-03
通讯作者:
丁南,尹东明
基金资助:
Quan-Bing REN1, Ming ZHONG1, Bo ZHENG1, Lan FENG1, Nan DING2(), Dong-Ming YIN2(), Yong CHENG2, Li-Min WANG2
Received:
2023-07-12
Accepted:
2023-10-23
Published:
2023-12-01
Online:
2024-01-03
Contact:
Nan DING,Dong-Ming YIN
About author:
dingnan@ciac.ac.cnSupported by:
摘要:
钒基固溶体储氢合金具有体心立方(BCC)结构,储氢质量分数在3.8%以上,充放电容量为1052 mA·h/g,优于AB2和AB5等系列合金,并且在常温常压下表现出较高的氢溶解度和扩散系数,因此在氢储运系统以及氢能源供应等领域具有广阔的应用前景,但钒基固溶体合金存在着活化难度大、放氢条件苛刻、循环寿命短以及对氧敏感易氧化等问题。研究表明,稀土对多种固态储氢材料均有很好的改性作用,将稀土元素通过元素替代或掺杂的方式加入到钒基固溶体合金中,有助于生成高活性的稀土或稀土氧化物第二相,可明显改善材料的吸放氢热力学、循环稳定性以及抗毒化性质,同时可减少材料内的氧含量,提高材料的活化特性。电化学性能方面,稀土元素的添加能显著提升合金电极的循环稳定性、耐腐蚀能力以及高倍率放电性能。因此,稀土元素取代是实现钒基固溶体储氢材料实际应用的一项行之有效的方法。本文报道了近30年稀土改性钒基固溶体储氢合金的研究现状,重点总结了稀土元素的作用机制,并对今后重点研究方向进行了展望。
中图分类号:
任权兵, 钟鸣, 郑波, 冯兰, 丁南, 尹东明, 程勇, 王立民. 稀土元素改性钒基固溶体储氢合金研究进展[J]. 应用化学, 2023, 40(12): 1601-1612.
Quan-Bing REN, Ming ZHONG, Bo ZHENG, Lan FENG, Nan DING, Dong-Ming YIN, Yong CHENG, Li-Min WANG. Research Progress on Rare Earth Element Modified V-Based Solid Solution Hydrogen Storage Alloys[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1601-1612.
VH x | Lattice constant | Unit-cell V/μm3 | Phase type | |||||
---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | α/(°) | β/(°) | γ/(°) | |||
V | 0.302 6 | 0.302 6 | 0.303 0 | 90.00 | 90.00 | 90.00 | 27.73 | BCC |
VH0.125 | 0.304 5 | 0.304 5 | 0.303 2 | 89.99 | 89.99 | 90.04 | 28.11 | BCC |
VH0.25 | 0.304 8 | 0.304 8 | 0.303 4 | 90.03 | 90.00 | 90.00 | 28.18 | BCC |
VH0.50 | 0.306 5 | 0.306 6 | 0.311 3 | 89.97 | 90.02 | 90.09 | 29.96 | BCT |
VH0.75 | 0.316 7 | 0.316 2 | 0.316 8 | 89.94 | 89.88 | 89.77 | 31.71 | Amorphosis BCC |
VH | 0.317 1 | 0.317 0 | 0.315 4 | 90.00 | 89.99 | 89.99 | 31.71 | BCC |
VH | 4.102 | 4.102 | 4.102 | 90.00 | 90.00 | 90.00 | 34.50 | FCC |
VH1.25 | 0.412 7 | 0.411 0 | 0.411 0 | 90.02 | 89.97 | 89.99 | 34.87 | FCC |
VH1.50 | 0.410 4 | 0.410 4 | 0.410 4 | 89.99 | 89.99 | 89.99 | 34.56 | FCC |
VH1.75 | 0.420 0 | 0.420 0 | 0.420 0 | 90.28 | 90.09 | 90.15 | 37.05 | Amorphosis FCC |
VH2.0 | 0.427 6 | 0.427 9 | 0.427 9 | 89.99 | 90.00 | 90.01 | 39.09 | FCC |
表1 VH x 的晶胞参数和晶胞体积的计算结果[31]
Table 1 The cell parameters and volume of VH x[31]
VH x | Lattice constant | Unit-cell V/μm3 | Phase type | |||||
---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | α/(°) | β/(°) | γ/(°) | |||
V | 0.302 6 | 0.302 6 | 0.303 0 | 90.00 | 90.00 | 90.00 | 27.73 | BCC |
VH0.125 | 0.304 5 | 0.304 5 | 0.303 2 | 89.99 | 89.99 | 90.04 | 28.11 | BCC |
VH0.25 | 0.304 8 | 0.304 8 | 0.303 4 | 90.03 | 90.00 | 90.00 | 28.18 | BCC |
VH0.50 | 0.306 5 | 0.306 6 | 0.311 3 | 89.97 | 90.02 | 90.09 | 29.96 | BCT |
VH0.75 | 0.316 7 | 0.316 2 | 0.316 8 | 89.94 | 89.88 | 89.77 | 31.71 | Amorphosis BCC |
VH | 0.317 1 | 0.317 0 | 0.315 4 | 90.00 | 89.99 | 89.99 | 31.71 | BCC |
VH | 4.102 | 4.102 | 4.102 | 90.00 | 90.00 | 90.00 | 34.50 | FCC |
VH1.25 | 0.412 7 | 0.411 0 | 0.411 0 | 90.02 | 89.97 | 89.99 | 34.87 | FCC |
VH1.50 | 0.410 4 | 0.410 4 | 0.410 4 | 89.99 | 89.99 | 89.99 | 34.56 | FCC |
VH1.75 | 0.420 0 | 0.420 0 | 0.420 0 | 90.28 | 90.09 | 90.15 | 37.05 | Amorphosis FCC |
VH2.0 | 0.427 6 | 0.427 9 | 0.427 9 | 89.99 | 90.00 | 90.01 | 39.09 | FCC |
RE | Phase | Lattice parameters/nm | Cell volume/nm3 | |
---|---|---|---|---|
a | c | |||
— | BCC | 0.293 4 | 0.798 0 | 0.025 26 |
C14 Laves | 0.487 3 | 0.164 1 | ||
La | BCC | 0.296 0 | 0.803 0 | 0.025 93 |
C14 Laves | 0.490 1 | 0.167 0 | ||
Ce | BCC | 0.298 0 | 0.801 4 | 0.026 46 |
C14 Laves | 0.487 7 | 0.165 1 | ||
Pr | BCC | 0.298 4 | 0.804 6 | 0.026 58 |
C14 Laves | 0.493 7 | 0.169 8 | ||
Nd | BCC | 0.299 0 | 0.803 6 | 0.026 73 |
C14 Laves | 0.490 1 | 0.167 2 | ||
Gd | BCC | 0.299 0 | 0.798 4 | 0.026 73 |
C14 Laves | 0.492 5 | 0.167 8 |
表2 Ti0.26Zr0.07V0.24Mn0.1Ni0.33RE0.01合金样品的晶格参数[36]
Table 2 Lattice parameters of Ti0.26Zr0.07V0.24Mn0.1Ni0.33RE0.01 alloy[36]
RE | Phase | Lattice parameters/nm | Cell volume/nm3 | |
---|---|---|---|---|
a | c | |||
— | BCC | 0.293 4 | 0.798 0 | 0.025 26 |
C14 Laves | 0.487 3 | 0.164 1 | ||
La | BCC | 0.296 0 | 0.803 0 | 0.025 93 |
C14 Laves | 0.490 1 | 0.167 0 | ||
Ce | BCC | 0.298 0 | 0.801 4 | 0.026 46 |
C14 Laves | 0.487 7 | 0.165 1 | ||
Pr | BCC | 0.298 4 | 0.804 6 | 0.026 58 |
C14 Laves | 0.493 7 | 0.169 8 | ||
Nd | BCC | 0.299 0 | 0.803 6 | 0.026 73 |
C14 Laves | 0.490 1 | 0.167 2 | ||
Gd | BCC | 0.299 0 | 0.798 4 | 0.026 73 |
C14 Laves | 0.492 5 | 0.167 8 |
图2 基准合金和Ti0.26Zr0.07V0.24Mn0.1Ni0.33RE0.01合金的 SEM 照片[36](a) Norm alloy, (b) La, (c) Ce, (d) Pr, (e) Nd, (f) Gd
Fig.2 SEM image of Ti0.26Zr0.07V0.24Mn0.1Ni0.33RE0.01 alloys[36]
Products | ΔH/(kJ·mol-1) | ΔS/(J·K·mol-1) | ΔG/(kJ·mol-1) at 298 K |
---|---|---|---|
VH2 | -40.2 | -142.3 | 2.2 |
LaH2 | -207.9 | 148.5 | -252.2 |
PrH2 | -200.0 | 146.4 | -243.6 |
CeH2 | -141.8 | 148.1 | -186.0 |
CeH2.69 | -176.8 | 148.1 | -221.0 |
表3 不同元素的热力学参数[46]
Table 3 Thermal-dynamic parameters of different elements[46]
Products | ΔH/(kJ·mol-1) | ΔS/(J·K·mol-1) | ΔG/(kJ·mol-1) at 298 K |
---|---|---|---|
VH2 | -40.2 | -142.3 | 2.2 |
LaH2 | -207.9 | 148.5 | -252.2 |
PrH2 | -200.0 | 146.4 | -243.6 |
CeH2 | -141.8 | 148.1 | -186.0 |
CeH2.69 | -176.8 | 148.1 | -221.0 |
Cycles | Capacity/% | Capacity retention rate(R)/% | ||
---|---|---|---|---|
TiV1.1Cr0.3Mn0.6 | Ti0.9Y0.1V1.1Mn0.7Cr0.2 | TiV1.1Cr0.3Mn0.6 | Ti0.9Y0.1V1.1Mn0.7Cr0.2 | |
1st | 3.345 | 3.084 | 100 | 100 |
25th | 3.283 | 2.97 | 98.15 | 96.30 |
50th | 3.177 | 2.95 | 94.98 | 95.65 |
75th | 3.068 | 2.889 | 91.72 | 93.68 |
100th | 2.852 | 2.851 | 85.23 | 92.44 |
表4 TiV1.1Cr0.3Mn0.6 和Ti0.9Y0.1V1.1Mn0.7Cr0.2合金在298 K的循环寿命[52]
Table 4 The capacity and capacity retention rate(R) of the TiV1.1Cr0.3Mn0.6 and Ti0.9Y0.1V1.1Mn0.7Cr0.2 after cycles at 298 K[52]
Cycles | Capacity/% | Capacity retention rate(R)/% | ||
---|---|---|---|---|
TiV1.1Cr0.3Mn0.6 | Ti0.9Y0.1V1.1Mn0.7Cr0.2 | TiV1.1Cr0.3Mn0.6 | Ti0.9Y0.1V1.1Mn0.7Cr0.2 | |
1st | 3.345 | 3.084 | 100 | 100 |
25th | 3.283 | 2.97 | 98.15 | 96.30 |
50th | 3.177 | 2.95 | 94.98 | 95.65 |
75th | 3.068 | 2.889 | 91.72 | 93.68 |
100th | 2.852 | 2.851 | 85.23 | 92.44 |
图8 (a) Ti0.26Zr0.07V0.24-x Mn0.1Ni0.33RE x (x=0,0.005; RE=Gd, Ho, Er, Yb, Y)合金的高倍率放电能力(HRD);(b)在50%放电深度DOD和303 K下测量的电化学阻抗谱和等效电路[59]
Fig.8 (a) High rate discharge ability(HRD) of Ti0.26Zr0.07V0.24-x Mn0.1Ni0.33RE x (x=0,0.005; RE=Gd,Ho,Er,Yb,Y) alloy electrode; (b) Electrochemical impedance spectroscopy alloy electrode measured at the 50% DOD and 303 K and equivalent circuit[59]
Samples | Rct /Ω | I0/(mA·g-1) |
---|---|---|
Norm | 0.154 | 169.5 |
Gd | 0.453 | 57.6 |
Ho | 0.125 | 208.8 |
Er | 0.155 | 178.4 |
Yb | 0.152 | 171.7 |
Y | 0.143 | 182.6 |
表5 Ti0.26Zr0.07V0.24-x Mn0.1Ni0.33RE x (x=0,0.005; RE=Gd, Ho, Er, Yb, Y)合金电极的电化学动力学参数[59]
Table 5 Electrochemical kinetic parameters of Ti0.26Zr0.07V0.24-x Mn0.1Ni0.33RE x (x=0,0.005; RE=Gd, Ho, Er, Yb, Y) alloy electrode[59]
Samples | Rct /Ω | I0/(mA·g-1) |
---|---|---|
Norm | 0.154 | 169.5 |
Gd | 0.453 | 57.6 |
Ho | 0.125 | 208.8 |
Er | 0.155 | 178.4 |
Yb | 0.152 | 171.7 |
Y | 0.143 | 182.6 |
1 | LIU H, XU L, HAN Y, et al. Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage[J]. Green Energy Environ, 2021, 6(4): 528-537. |
2 | MARBÁN G, VALDÉS-SOLÍS T. Towards the hydrogen economy?[J]. Int J Hydrogen Energy, 2007, 32(12): 1625-1637. |
3 | NI M, LEUNG M K H, LEUNG D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production[J]. Renew Sustainable Energy Rev, 2007, 11(3): 401-425. |
4 | 张振扬, 解辉. 液氢的制、储、运技术现状及分析[J]. 可再生能源, 2023, 41(3): 298-305. |
ZHANG Z Y, XIE H. Status quo and analysis of liquid hydrogen production, storage and transportation technology[J]. Renew Energy Resour, 2023, 41(3): 298-305. | |
5 | 李军, 薄柯, 黄强华, 等. 高压氢气储运移动式压力容器发展趋势与挑战[J]. 太阳能学报, 2022, 43(3): 20-26. |
LI J, BO K, HUANG Q H, et al. Development trend and challenges of high pressure hydrogen transpotable pressure vessel[J]. Acta Energy Solar Sin, 2022, 43(3): 20-26. | |
6 | JENA P. Materials for hydrogen storage: past, present, and future[J]. J Phys Chem Lett, 2011, 2(3): 206-211. |
7 | LANGMI H W, REN J W, NORTH B, et al. Hydrogen storage in metal-organic frameworks: a review[J]. Electrochim Acta, 2014, 128: 368-392. |
8 | 王璐, 金之钧, 苏宇通. 新型固体储氢材料的研究进展[J]. 石油学报(石油加工), 2023, 39(1): 229-239. |
WANG L, JIN Z J, SU Y T, et al. Research progress of several new types of solid hydrogen storage materials[J]. Acta Petrol Sin(Petrol Proc Sect), 2023, 39(1): 229-239. | |
9 | LIN H J, LU Y S, ZHANG L T, et al. Recent advances in metastable alloys for hydrogen storage: a review[J]. Rare Met, 2022, 41(6): 1797-1817. |
10 | LIU H Z, LI X, YU H, et al. Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage[J]. Green Energy Environ, 2021, 6(4): 528-537. |
11 | 陈思, 张宁, 阚洪敏, 等. LaNi5系储氢合金的研究现状及展望[J]. 化工新型材料, 2017, 45(9): 26-28. |
CHEN S, ZHANG N, KAN H M, et al. Advance and trend of LaNi5 base hydrogen storage material[J]. New Chem Mater, 2017, 45(9): 26-28. | |
12 | JIANG W, HE C, YANG X, et al. Influence of element substitution on structural stability and hydrogen storage performance: a theoretical and experimental study on TiCr2- xMnx alloy[J]. Renew Energy, 2022, 197: 564-573. |
13 | ZEAITER A, NARDIN P, YAZDI M A P, et al. Outstanding shortening of the activation process stage for a TiFe-based hydrogen storage alloy[J]. MRS Bull, 2019, 112: 132-141. |
14 | SHAO H, HE L, LIN H, et al. Progress and trends in magnesium-based materials for energy-storage research: a review[J]. Energy Technol, 2018, 6(3): 445-458. |
15 | LI B, LI J, ZHAO H, et al. Mg-based metastable nano alloys for hydrogen storage[J]. Int J Hydrogen Energy, 2019, 44(12): 6007-6018. |
16 | LIANG F, LIN J, CHENG Y, et al. Gaseous sorption and electrochemical properties of rare-earth hydrogen storage alloys and their representative applications: a review of recent progress[J]. Sci China Technol Sci, 2018, 61(9): 1309-1318. |
17 | 柴玉俊, 赵敏寿. 几种固溶体储氢合金的研究近况[J]. 稀有金属材料与工程, 2005(2): 174-177. |
CHAI Y J, ZHAO M S. Recent development of several solid solution hydrogen storage alloys[J]. Rare Met Mater Eng, 2005(2):174-177. | |
18 | CHEN P, ZHU M. Recent progress in hydrogen storage[J]. Mater Today, 2008, 11(12): 36-43. |
19 | DENG A, FAN J, ZHAO R, et al. Progress in the research of hydrogen storage materials[J]. New Chem Mater, 2009, 37(12): 8-10, 48. |
20 | HUANG H, HUANG K, LIU S. Progress in hydrogen storage technologies and materials[J]. New Chem Mater, 2008, 36(11): 27-29. |
21 | BALCERZAK M. Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys[J]. Int J Hydrogen Energy, 2017, 42(37): 23698-23707. |
22 | DIXIT V, HUOT J. Investigation of the microstructure, crystal structure and hydrogenation kinetics of Ti-V-Cr alloy with Zr addition[J]. J Alloy Compd, 2019, 785: 1115-1120. |
23 | MAZZOLAI G, COLUZZI B, BISCARINI A, et al. Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys[J]. J Alloy Compd, 2008, 466(1/2): 133-139. |
24 | YANG J, LIANG F, CHENG Y, et al. Improvement of dehydrogenation performance by adding CeO2 to α-AlH3[J]. Int J Hydrogen Energy, 2020, 45(3): 2119-2126. |
25 | YOUNG K, WONG D F, OUCHI T, et al. Effects of La-addition to the structure, hydrogen storage, and electrochemical properties of C14 metal hydride alloys[J]. Electrochim Acta, 2015, 174: 815-825. |
26 | LI J, XIE L, ZHANG T, et al. Microstructure and absorption/desorption kinetics evolutions of Mg-Ni-Ce alloys during hydrogenation and dehydrogenation cycles[J]. Int J Hydrogen Energy, 2018, 43(17): 8404-8414. |
27 | LENG H, YU Z, YIN J, et al. Effects of Ce on the hydrogen storage properties of TiFe0.9Mn0.1 alloy[J]. Int J Hydrogen Energy, 2017, 42(37): 23731-23736. |
28 | 裴沛, 张沛龙, 张蓓, 等. V系储氢合金及其合金化[J]. 材料导报, 2006(10): 123-127. |
PEI P, ZHANG P L, ZHANG B, et al. V based hydrogen storage alloys and alloying research[J]. Mater Rep, 2006(10): 123-127. | |
29 | KUMAR S, JAIN A, ICHIKAWA T, et al. Development of vanadium based hydrogen storage material: a review[J]. Renew Sustainable Energy Rev, 2017, 72: 791-800. |
30 | YUKAWA H, TESHIMA A, YAMASHITA D, et al. Alloying effects on the hydriding properties of vanadium at low hydrogen pressures[J]. J Alloy Compd, 2002, 337: 264-268. |
31 | 彭述明, 赵鹏骥, 杨茂年, 等. 金属钒及其氢化物的晶体结构模拟[J]. 原子能科学技术, 2000(5): 469-472. |
PENG S M, ZHAO P J, YANG M N, et al. Simulation on crystal structures of metallic V and its hydrides[J]. At Energy Sci Technol, 2000(5): 469-472. | |
32 | KUMAR S, TIWARI G P, KRISHNAMURTHY N. Tailoring the hydrogen desorption thermodynamics of V2H by alloying additives[J]. J Alloy Compd, 2015, 645: S252-S256. |
33 | MAO Y, YANG S, WU C, et al. Preparation of (FeV80)48Ti26+ xCr26(x=0~4) alloys by the hydride sintering method and their hydrogen storage performance[J]. J Alloy Compd, 2017, 705: 533-528. |
34 | LI R, ZHOU S Q, CHEN G G, et al. Quantum chemistry study on electronic structure of vanadium hydride[J]. Acta Phys-Chim Sin, 2005, 21(7): 716-720. |
35 | LIU J J, CHENG H H,HAN S M, et al. Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0.25Ni3.45 alloys with A2B7-type superlattice structure[J]. Energy, 2020, 192: 116617. |
36 | 刘妍, 赵敏寿, 李书存, 等. 添加稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33储氢合金微观结构和电化学性能的影响[J]. 中国稀土学报, 2008, 112(2): 188-194. |
LIU Y, ZHAO M S, LI S C, et al. Effect of rare earth elements on microstructure and electrochemical characteristics of Ti0.26Zr0.07V0.24Mn0.1Ni0.33 alloy[J]. J Chin Rare Earth Soc, 2008, 112(2): 188-194. | |
37 | 陆永鑫, 王凤, 龙乾新, 等. Y掺杂的V基固溶体合金的结构和氢渗透性能[J]. 中国有色金属学报, 2022: 43479. |
LU Y X, WANG F, LONG Q X, et al. Hydrogen permeability and interdiffusion phenomenon of V solid solution membrane with trace yttrium element[J]. Chin J Nonferrous Met, 2022: 43479. | |
38 | OH J Y, KO W S, SUH J Y, et al. Enhanced high temperature hydrogen permeation characteristics of V-Ni alloy membranes containing a trace amount of yttrium[J]. Scr Mater, 2016, 116: 122-126. |
39 | TALBURT D E, JOHNSON G T. Some effects of rare earth elements and yttrium on microbial growth[J]. Mycologia, 2018, 59(3): 492-503. |
40 | SMITH J F, LEE K J, MARTIN D M, et al. Binary rare earth-vanadium systems[J]. Calphad, 1988, 12(1): 89-96. |
41 | MATTERN N, YOKOYAMA Y, MIZUNO A, et al. Experimental and thermodynamic assessment of the La-Ti and La-Zr systems[J]. Calphad, 2016, 52: 8-20. |
42 | OKAMOTO H. Sc-Ti(scandium-titanium)[J]. J Phase Equilibria Diffus, 2013, 34(2): 158-159. |
43 | LUO L, LI Y, YUAN Z, et al. Nanoscale microstructures and novel hydrogen storage performance of as cast V47Fe11Ti30Cr10RE2(RE=La, Ce, Y, Sc) medium entropy alloys[J]. J Alloy Compd, 2022(913): 165273. |
44 | QIAO Y, ZHAO M, ZHU X, et al. Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3(RE=Ce,Dy) hydrogen storage electrode alloys[J]. Int J Hydrogen Energ, 2007, 32(15): 3427-3734. |
45 | ZHANG H, YE J, WU X, et al. Effect of La doping on kinetic and thermodynamic performances of Ti1.2CrMn alloy upon de/hydrogenation[J]. ACS Omega, 2022, 7(45): 40807-40814. |
46 | WU C, YAN Y, CHEN Y, et al. Effect of rare earth(RE) elements on V-based hydrogen storage alloys[J]. Int J Hydrogen Energy, 2008, 33(1): 93-97. |
47 | SINGH B K, CHO S W, BARTWAL K S. Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y[J]. J Alloy Compd, 2009, 478(1/2): 785-788. |
48 | KONG L, LI X, YOUNG K, et al. Effects of rare-earth element additions to Laves phase-related body-centered-cubic solid solution metal hydride alloys: thermodynamic and electrochemical properties[J]. J Alloy Compd, 2018, 737: 174-183. |
49 | LIANG F, DING N, LIU W Q, et al. Superior reversible hydrogen storage capacity of V-based solid solution alloy above atmospheric pressure with yttrium substitution[J]. Mater Lett, 2021(297): 129945 |
50 | LIU X P, CUEVAS F, JIANG L J, et al. Improvement of the hydrogen storage properties of Ti-Cr-V-Fe BCC alloy by Ce addition[J]. J Alloy Compd, 2009, 476(1/2): 403-407. |
51 | CHEN X Y, CHEN R R, YU K, et al. Effect of Ce substitution on hydrogen absorption/desorption of Laves phase-related BCC solid solution Ti33V37Mn30 alloy[J]. J Alloy Compd, 2019, 783: 617-624. |
52 | DING N, LI Y, LIANG F, et al. Highly efficient hydrogen storage capacity of 2.5wt% above 0.1 MPa using Y and Cr codoped V-based alloys[J]. ACS Appl Energy Mater, 2022, 5(3): 3282-3289. |
53 | BOWMAN J, WITHAM C, RATNAKUMAR B et al. Hydriding behavior of gas-atomized AB5 alloys[J]. J Alloy Compd, 1997, 253/254: 613-616. |
54 | SPODARYK M, SHCHERBAKOVA L, SAMELJUK A, et al. Description of the capacity degradation mechanism in LaNi5-based alloy electrodes[J]. J Alloy Compd, 2015, 621: 225-231. |
55 | ARASHIMA H, TAKAHASHI F, EBISAWA T, et al. Correlation between hydrogen absorption properties and homogeneity of Ti-Cr-V alloys[J]. J Alloy Compd, 2003, 356: 405-408. |
56 | 董玉臻. 合金元素对钒基固溶体储氢合金组织与电化学性能的影响[J]. 钢铁钒钛, 2015, 36(4): 43-47. |
DONG Y Z. Effect of alloy elements on the microstructure and electrochemical performance of vanadium-based solid solution hydrogen storage alloy[J]. Iron Steel Vanadium Titanium, 2015, 36(4): 43-47. | |
57 | 黄亮, 赵敏寿, 李佳, 等. 镧对Ti-V-Mn-Ni贮氢合金结构及电化学性能的影响[J]. 中国稀土学报, 2007(1): 74-79. |
HUANG L, ZHAO M S, LI J, et al. Effect of lanthanum substitution for partial vanadium on microstructure and electrochemical properties of Ti -V-Mn-Ni alloys[J]. J Chin Rare Earth Soc, 2007(1): 74-79. | |
58 | SU L Y, LIU F J, BAO D Y. An advanced tife series hydrogen storage material with high hydrogen capacity and easily activated properties[J]. Int J Hydrogen Energy, 1990, 15(4): 259-262. |
59 | LI S, WEN B, ZHAI J, et al. Effect of rare earth elements substitution for vanadium on microstructures and electrochemical properties of Ti0.26Zr0.07V0.24Mn0.1Ni0.33 alloy[J]. Powder Technol, 2016, 303:1-6. |
60 | KURIYAMA N, SAKAI T, MIYAMURA H, et al. Electrochemical impedance and deterioration behavior of metal hydride electrodes[J]. J Alloy Compd, 1993, 202: 183-197. |
[1] | 苗聪慧, 迪丽努尔·艾力, 廖正坤, 鲁景山, 刘清华, 李江圆, 艾沙·努拉洪. 以粉煤灰为原料制备ZSM-5沸石分子筛及其储氢性能[J]. 应用化学, 2023, 40(7): 995-1003. |
[2] | 姚陈忠, 马会宣, 童叶翔. 非晶纳米高熵合金薄膜Nd-Fe-Co-Ni-Mn的电化学制备及磁学性能[J]. 应用化学, 2011, 28(10): 1189-1194. |
[3] | 佟珊珊, 石云峰, 吕学举, 宋乃忠, 刘威, 贾琼, 周伟红. 多壁碳纳米管对稀土元素的吸附性能[J]. 应用化学, 2010, 27(08): 944-949. |
[4] | 徐岩, 陆军, 李德谦. 聚乙二醇-硫酸铵双水相体系中稀土元素的分配[J]. 应用化学, 2000, 17(1): 22-25. |
[5] | 单永奎, 叶兴凯, 吴越. Keggin结构的钨磷钒稀土四元杂多配合物的合成和物化性质[J]. 应用化学, 1995, 0(6): 42-46. |
[6] | 孙静, 郑重, 李德谦, 叶伟贞. 异丙基膦酸单(1-己基-4-乙基)辛酯与HPMBP协同萃取稀土元素(Ⅲ)[J]. 应用化学, 1995, 0(3): 64-66. |
[7] | 孙静, 李德谦. BTMPPA与HPMBP协同萃取稀土元素(Ⅲ)的研究[J]. 应用化学, 1994, 0(3): 49-53. |
[8] | 李冬成, 姚克敏, 曹美华, 沈联芳, 田清平. 稀土元素与3,4-二羟基苯甲醛缩邻氨基苯甲酸配合物的合成和表征[J]. 应用化学, 1993, 0(3): 8-11. |
[9] | 陈礼勤, 倪诗圣, 徐济德. 2,4,4,11,13,13-六甲基-1,5,10,14-四氮杂环十八烷-N,N″-二乙酸及其镧系配合物的合成和表征[J]. 应用化学, 1991, 0(4): 7-10. |
[10] | 阎雁, 任英. 稀土高氯酸溶液导数吸收光谱的研究及其在分析中的应用——Ⅵ.高阶导数光度法直接测定轻稀土-铝中间合金中的铈、镨和钕[J]. 应用化学, 1990, 0(1): 58-61. |
[11] | 常玉勤, 霍国燕, 赵敏寿, 江志韫. 稀土元素对二次锂电池中Li-Al负极材料电化学行为的影响[J]. 应用化学, 1989, 0(1): 85-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||