应用化学 ›› 2023, Vol. 40 ›› Issue (8): 1109-1125.DOI: 10.19894/j.issn.1000-0518.230126

• 综合评述 • 上一篇    下一篇

超亲水/超疏气电解水催化剂的研究进展

谭翠盈1,2, 丁威超1, 马婷婷1, 肖瑶1(), 刘健2()   

  1. 1.青岛科技大学材料科学与工程学院,青岛 266042
    2.中国科学院青岛生物能源与过程研究所,青岛 266101
  • 收稿日期:2023-04-29 接受日期:2023-07-06 出版日期:2023-08-01 发布日期:2023-08-24
  • 通讯作者: 肖瑶,刘健
  • 基金资助:
    国家自然科学基金(22109081);青岛科技大学2022年大学生创新训练计划项目(202210426071)

Research Progress on Superhydrophilic/Superaerophobic Electrocatalysts for Water Splitting

Cui-Ying TAN1,2, Wei-Chao DING1, Ting-Ting MA1, Yao XIAO1(), Jian LIU2()   

  1. 1.College of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China
    2.Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Science,Qingdao 266101,China
  • Received:2023-04-29 Accepted:2023-07-06 Published:2023-08-01 Online:2023-08-24
  • Contact: Yao XIAO,Jian LIU
  • About author:liujian@qibebt.ac.cn
    xiaoyao@qust.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22109081);the National Undergraduate Innovation and Entrepreneurship Training Program(202210426071)

摘要:

电解水制氢是一种环保、简便且易于操控的制氢技术。工业化电解水制氢通常在高电流密度下进行,在制氢过程中会产生大量气泡,而气泡在电极表面聚集粘附会覆盖大量活性位点,导致电解水效率降低。因此,调控气体扩散行为对于工业电解水应用来说至关重要。近年来,超浸润材料因为其独特的润湿性能而备受关注。通过控制催化剂表面的化学组成和多尺度微纳米结构可以构建出超浸润界面材料。此类材料具有超亲水/超疏气的界面结构,有助于水相电解液的有效浸润和原位生成气泡的快速释放,从而提升催化剂的水电解性能。系统介绍了2014年至2023年期间报道的部分具有超亲水/超疏气界面结构的电解水催化剂的现状,概述其材料的合成设计策略和水电解催化性能,并对超浸润水电解催化剂的研究现状、面临的挑战和应用前景进行了总结和展望。

关键词: 超疏气, 超亲水, 界面, 水电解, 纳米材料

Abstract:

Among many hydrogen production technologies, electrolysis of water has many obvious advantages, such as environmentally friendly, simple and easy to operate. Industrial-scale hydrogen production is typically carried out at high current density. A great number of H2 bubbles will generate on the electrode surface during the process of hydrogen production. The aggregation and adhesion of bubbles on the electrode surface will lead to a large number of active sites being covered, resulting in the reduction of the efficiency. Therefore, regulating bubble wetting behavior is crucial for industrial electrolysis of water. In recent years, superaerophobic materials have attracted much attention due to their unique wetting capabilities. Superwetting interface materials can be constructed by controlling the chemical composition of the electrode surface and constructing rough structure at micro and nano scales. This type of material has a superhydrophilic/superaerophobic interface structure, which facilitates the effective infiltration of aqueous electrolyte and accelerates the release of in-situ generated bubbles, thus enhancing the water splitting performance of the catalyst. This paper systematically introduces the water splitting catalysts with superhydrophilic/superaerophobic interfacial structures reported in recent years, outlines the synthetic design strategies and catalytic performance of the catalysts, and the current research status, challenges and application prospects of superwetting water splitting catalysts are summarized and prospected.

Key words: Superaerophobic, Superhydrophilic, Interface, Water splitting, Nanomaterial

中图分类号: