应用化学 ›› 2023, Vol. 40 ›› Issue (7): 964-975.DOI: 10.19894/j.issn.1000-0518.230055
收稿日期:
2023-03-08
接受日期:
2023-06-27
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
于海军
基金资助:
Xiao-Ying LIU1,2, Fang-Min CHEN2, Hui-Juan ZHANG2, Hai-Jun YU1,2()
Received:
2023-03-08
Accepted:
2023-06-27
Published:
2023-07-01
Online:
2023-07-19
Contact:
Hai-Jun YU
About author:
hjyu@simm.ac.cnSupported by:
摘要:
恶性肿瘤是威胁人类健康的重大疾病。开发安全高效的抗肿瘤药物及其递送系统是改善抗肿瘤药物疗效的重要保证。近年来,基于环糊精的抗肿瘤药物主客体递送系统受到了广泛关注。环糊精是通过淀粉酶解获得的环状低聚糖,具有外部亲水内部疏水的特殊结构,在基因治疗、免疫细胞治疗、免疫靶向治疗和化疗中均得到了广泛的应用。本综述主要总结了环糊精作为抗癌药物递送载体近10年的相关进展,同时对主客体递送系统在癌症治疗方面的机遇和挑战进行了展望和讨论。
中图分类号:
刘小英, 陈方敏, 张惠娟, 于海军. 基于环糊精的抗肿瘤药物主客体递送系统研究进展[J]. 应用化学, 2023, 40(7): 964-975.
Xiao-Ying LIU, Fang-Min CHEN, Hui-Juan ZHANG, Hai-Jun YU. Advancement of Cyclodextrin-Based Host-Guest Drug Delivery System for Antitumor Therapy[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 964-975.
Type | Derivative | Characteristics | Example | Application | Ref. |
---|---|---|---|---|---|
Hydrophilic | Methylated | Good solubility in water as well as in organic solvents | RM-β-CD, per-O-methyl-β-CD | Nasal and ocular drug delivery systems | [ |
Hydrophilic | Hydroylated | Amorphous mixture and highly water soluble with very low toxicity | 2-HP- β-CD, 3-HP- β-CD, 2,3-HP- β-CD | Parenteral, ocular and oral drug delivery systems | [ |
Hydrophilic | Alkylated | Poorly soluble in water, but soluble in organic solvents | 2,6-Di-O-ethyl-β -CD, per-O-ethyl-β-CD | Parenteral and ocular drug delivery systems | [ |
Ionizable | Anionic | Soluble at pH below 4 with low toxicity | SBE- β-CD | Parenteral drug delivery applications | [ |
表1 环糊精的衍生物及其性质
Table 1 Derivatives of CD and their properties
Type | Derivative | Characteristics | Example | Application | Ref. |
---|---|---|---|---|---|
Hydrophilic | Methylated | Good solubility in water as well as in organic solvents | RM-β-CD, per-O-methyl-β-CD | Nasal and ocular drug delivery systems | [ |
Hydrophilic | Hydroylated | Amorphous mixture and highly water soluble with very low toxicity | 2-HP- β-CD, 3-HP- β-CD, 2,3-HP- β-CD | Parenteral, ocular and oral drug delivery systems | [ |
Hydrophilic | Alkylated | Poorly soluble in water, but soluble in organic solvents | 2,6-Di-O-ethyl-β -CD, per-O-ethyl-β-CD | Parenteral and ocular drug delivery systems | [ |
Ionizable | Anionic | Soluble at pH below 4 with low toxicity | SBE- β-CD | Parenteral drug delivery applications | [ |
图2 CD包合物的制备方法。A. 超声法,饱和水溶液法冷冻干燥法制备环糊精包合物; B. 共挥发法制备环糊精包合物; C. 研磨法制备环糊精包合物
Fig.2 Preparation of CD/drug inclusion complexes. A. Cyclodextrin inclusion complexes prepared by ultrasonic method, freeze-drying method in saturated aqueous solution; B. Cyclodextrin inclusion complexes prepared by co-volatilization method; C. Cyclodextrin inclusion complexes prepared by grinding method
图4 以环糊精为基础的瑞格拉非尼复合物治疗大肠癌癌症。A. RG@M-γ-CD的制备; B. RG@M-γ-CD抑制肿瘤细胞增殖的示意图[55]
Fig.4 CD-based regorafenib complex for the treatment of colorectal cancer cancers. A. Preparation of RG@M-γ-CD; B. Schematic of RG@M-γ-CD inhibiting tumor cell proliferation[55]
图5 可用于结直肠癌靶向化疗-免疫治疗的人参皂苷Rg3和槲皮素的环糊精主客体纳米制剂。A.叶酸修饰靶向制剂的制备流程;B.叶酸靶向共地送系统诱导肿瘤ICD,实现免疫联合治疗示意图; C. CRC在35天内生长曲线。数据以平均值表示,标准差(n=5)*P<0.05和**P<0.01; NS,无意义。D.肿瘤IVIS图像; E.去除CD4+或CD8+T细胞后,用靶向共制剂治疗的原位CRC小鼠(数据以平均值表示,标准差(n=4)*P<0.05和**P<0.01; NS,无统计意义)[71]
Fig.5 Cyclodextrin-based nanoformulation enabling the co-administration of ginsenoside Rg3 and quercetin in colorectal cancer chemoimmunotherapy. A. Preparation of FA-targeted co-formulation; B. Schematic diagram of FA-targeted co-formulation-induced tumor immunogenic cell death treatment passages; C. Treatment plan and CRC progression within 35 days. Data are expressed as mean, standard deviation (n=5) *P<0.05 and **P<0.01; NS, no significant difference; D. Tumor IVIS images; E. In situ CRC mice treated with targeted co-formulation after removal of CD4+ or CD8+ T cells. Data are expressed as mean, standard deviation (n=4) *P<0.05 and **P<0.01; NS, no significant difference[71]
图6 环糊精聚合物在治疗癌症方面的应用。A. HCJSP的合成; B. HCJSP诱导的激发T细胞活化和克服适应性免疫抵抗来增强胰腺癌症的光免疫治疗的示意图; C.环糊精交联聚合物CDNP的合成路线[77-79]
Fig.6 CD polymer-based drug delivery systems for cancer therapy. A. Synthesis of HCJSP; B. Cartoon schematic of HCJSP-induced stimulation of T cell activation and overcoming adaptive immune resistance to enhance photoimmunotherapy of pancreatic cancer; C. Synthetic route of cyclodextrin cross-linked polymer CDNP[77-79]
1 | SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48. |
2 | DA SILVA-DIZ V, LORENZO-SANZ L, BERNAT-PEGUERA A, et al. Cancer cell plasticity: impact on tumor progression and therapy response[J]. Semin Cancer Biol, 2018, 53: 48-58. |
3 | GAO J, HOU B, ZHU Q, et al. Engineered bioorthogonal poly-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy[J]. Nat Commun, 2022, 13: 4318-4332. |
4 | SONG R, LI T, YE J, et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer[J]. Adv Mater, 2021, 33: e2101155. |
5 | CHEN F, LI T, ZHANG H, et al. Acid-Ionizable iron nanoadjuvant augments STING activation for personalized vaccination immunotherapy of cancer[J]. Adv Mater, 2022: e2209910. |
6 | LI T, SONG R, SUN F, et al. Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy[J]. Nano Today, 2022, 43:101400. |
7 | HOU B, YE J, LI J, et al. In-situ clickable prodrug nanoplatform locally activates T lymphocytes to potentiate cancer immunotherapy[J]. Nano Today, 2022, 47: 101661. |
8 | YE J, HOU B, CHEN F, et al. Bispecific prodrug nanoparticles circumventing multiple immune resistance mechanisms for promoting cancer immunotherapy[J]. Acta Pharm Sin B, 2022, 12(6): 2695-2709. |
9 | LAJOS SZENTE J S. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development[J]. Adv Drug Delivery Rev, 1999, 36(1):17-28. |
10 | QI Q, ZIMMERMANN W. Cyclodextrin glucanotransferase: from gene to applications[J]. Appl Microbiol Biotechnol, 2005, 66(5): 475-485. |
11 | MORIN-CRINI N, FOURMENTIN S, FENYVESI É, et al. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review[J]. Environ Chem Lett, 2021, 19(3): 2581-2617. |
12 | KANETO UEKAMA F H, TETSUMI IRIE. Cyclodextrin-drug-carrier-systems[J]. Chem Rev, 1998, 98: 2045-2076. |
13 | LIAO R, LIU Y, LV P, et al. Cyclodextrin pendant polymer as an efficient drug carrier for scutellarin[J]. Drug Deliv, 2020, 27(1): 1741-1749. |
14 | 张有明, 魏太保. β-环糊精对D/L-酪氨酸对映体的手性识别及超分子包合物的合成 [J]. 应用化学, 1998, 15(6): 45-48. |
ZHANG Y M,WEI T B, et al. Chiral rrecognition of D/L-tyrosine by β-cyclodextrin and synthesis of supramolecular inclusion compoun[J]. Chin J Appl Chem, 1998, 15(6): 45-48. | |
15 | 李琳琳, 段尊斌, 朱丽君, 等. 基于修饰的β-环糊精的超分子体系研究及应用进展[J]. 应用化学, 2017, 34(2): 123-138. |
LI L L,DUAN Z B, ZHU L J, et al. Progress in study and application of supramolecular system based on β-cyclodextrin[J]. Chin J Appl Chem, 2017, 34(2): 123-138. | |
16 | YI S, ZHENG J, LV P, et al. Controlled drug release from cyclodextrin-gated mesoporous silica nanoparticles based on switchable host-guest interactions[J]. Bioconjug Chem, 2018, 29(9): 2884-2891. |
17 | GANDHI S, SHENDE P. Cyclodextrins-modified metallic nanoparticles for effective cancer therapy[J]. J Control Release, 2021, 339: 41-50. |
18 | XIAO Z, ZHANG Y, NIU Y, et al. Cyclodextrins as carriers for volatile aroma compounds: a review[J]. Carbohydr Polym, 2021, 269: 118292. |
19 | LIAO R, LV P, WANG Q, et al. Cyclodextrin-based biological stimuli-responsive carriers for smart and precision medicine[J]. Biomater Sci, 2017, 5(9): 1736-1745. |
20 | JEANDET P, SOBARZO-SANCHEZ E, UDDIN M S, et al. Resveratrol and cyclodextrins, an easy alliance: aplications in nanomedicine, green chemistry and biotechnology[J]. Biotechnol Adv, 2021, 53: 107844. |
21 | 牛青芳, 艾欣, 王奕璇, 等. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
NIU Q F, AI X, WANG Y X, et al. Synthesis of three⁃dimensional reduced graphene oxide/β-cyclodextrin complex and its electrochemical detection of levofloxacin in water[J]. Chin J Appl Chem, 2022, 39(7): 1129-1137. | |
22 | KHAN A R, FORGO P, STINE K J, et al. Methods for selective modifications of cyclodextrins[J]. Chem Rev, 1998, 98: 1977-1996. |
23 | 王后臣, 周利, 刘洋, 等. 超分子聚集体构筑单元的分子设计及其自组装研究进展[J]. 应用化学, 2021, 38(6): 615-621. |
WANG H C, ZHOU L, LIU Y,et al.Research progress on the molecular designs of building blocks for supramolecular aggregates and self-assemblies[J]. Chin J Appl Chem, 2021, 38(6): 615-621. | |
24 | WANG J, LIU L, CHEN J, et al. Supramolecular nanoplatforms via cyclodextrin host-guest recognition for synergistic gene-photodynamic therapy[J]. Eur Polym J, 2019, 118: 222-230. |
25 | ALABOALIRAT M, MATSON J B. Poly(β-cyclodextrin) prepared by ring-opening metathesis polymerization enables creation of supramolecular polymeric networks[J]. ACS Macro Lett, 2021, 10(12): 1460-1466. |
26 | WANG R, LIN Z W, KLEMES M J, et al. A tunable porous β-cyclodextrin polymer platform to understand and improve anionic pFAS removal[J]. ACS Cent Sci, 2022, 8(5): 663-669. |
27 | PÉDEHONTAA-HIAA G, GAUDIÈRE F, KHELIF R, et al. Polyvalent incorporation of anionic β-cyclodextrin polymers into layer-by-layer coatings[J]. Colloids Surf A: Physicochem Eng Aspects, 2023, 664: 131154. |
28 | MONFARED Y K, MAHMOUDIAN M, CECONE C, et al. Hyper-branched cationic cyclodextrin polymers for improving plasmid transfection in 2D and 3D spheroid cells[J]. Pharmaceutics, 2022, 14: 2690. |
29 | CELIK C, HIZAL G, TUNCA U. Synthesis of miktoarm star and miktoarm star block copolymers via a combination of atom transfer radical polymerization and stable free-radical polymerization[J]. J Polym Sci A: Polym Chem, 2003, 41(16): 2542-2548 . |
30 | MIAO Y, ZINCK P. Ring-opening polymerization of cyclic esters initiated by cyclodextrins[J]. Polym Chem, 2012, 3(5): 1119-1122. |
31 | RINCON-LOPEZ J, ALMANZA-ARJONA Y C, RIASCOS A P, et al. Technological evolution of cyclodextrins in the pharmaceutical field[J]. J Drug Deliv Sci Technol, 2021, 61: 102156. |
32 | LIU Y, LIN T, CHENG C, et al. Research progress on synthesis and application of cyclodextrin polymers[J]. Molecules, 2021, 26:1090. |
33 | LIU Z, LIU Y. Multicharged cyclodextrin supramolecular assemblies[J]. Chem Soc Rev, 2022, 51(11): 4786-4827. |
34 | NISHIDA K, TAMURA A, KANG T W, et al. An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated β-cyclodextrin-threaded polyrotaxanes[J]. J Mater Chem B, 2020, 8(31): 6975-6987. |
35 | SBARCEA L, TANASE I M, LEDETI A, et al. Risperidone/Randomly methylated β-cyclodextrin inclusion complex-compatibility study with pharmaceutical excipients[J]. Molecules, 2021, 26(6):1690. |
36 | KHIN S Y, SOE H, CHANSRINIYOM C, et al. Development of fenofibrate/randomly methylated β-cyclodextrin-loaded Eudragit(R) RL 100 nanoparticles for ocular delivery[J]. Molecules, 2022, 27(15): 4755. |
37 | TERAUCHI M, INADA T, TONEGAWA A, et al. Supramolecular inclusion complexation of simvastatin with methylated β-cyclodextrins for promoting osteogenic differentiation[J]. Int J Biol Macromol, 2016, 93: 1492-1498. |
38 | 孙琳琳, 周叶红, 王斐, 等. 羧甲基-β-环糊精功能化的四氧化三铁磁性纳米复合物对罗丹明B的吸附性能[J]. 应用化学, 2015, 32(1): 110-117. |
SUN L L, ZHOU Y H, WANG F, et al. Adsorption properties of carboxymethyl-β-cyclodextrin functionalized ferroferric oxide magnetic nanocomposites on rhodamine B[J]. Chin J Appl Chem, 2015, 32(1): 110-117. | |
39 | LEVIJOKI J, SALORANTA L, TUUNAINEN J, et al. Ocular administration of palonosetron in the prevention of cisplatin-induced nausea and vomiting[J]. J Pharmacol Exp Ther, 2023, 384(3): 439-444. |
40 | PATIL S M, BARJI D S, CHAVAN T, et al. Solubility enhancement and inhalation delivery of cyclodextrin-based inclusion complex of delamanid for pulmonary tuberculosis treatment[J]. AAPS Pharm Sci Tech, 2023, 24(1): 49. |
41 | CHEN L C, LIN S Y, CHENG W J, et al. Poloxamer sols endowed with in-situ gelability and mucoadhesion by adding hypromellose and hyaluronan for prolonging corneal retention and drug delivery[J]. Drug Deliv, 2023, 30(1): 2158964. |
42 | YANG N, WANG Y, ZHANG Q, et al. In situ formation of poly(thiolated chitosan-co-alkylated β-cyclodextrin) hydrogels using click cross-linking for sustained drug release[J]. J Mater Sci, 2018, 54(2): 1677-1691. |
43 | PARDESHI C V, KOTHAWADE R V, MARKAD A R, et al. Sulfobutylether-β-cyclodextrin: a functional biopolymer for drug delivery applications[J]. Carbohydr Polym, 2023, 301: 120347. |
44 | PAL A, ROY S, KUMAR A, et al. Physicochemical characterization, molecular docking, and in vitro dissolution of glimepiride-captisol inclusion complexes[J]. ACS Omega, 2020, 5(32): 19968-19977. |
45 | SOE H, KERDPOL K, RUNGROTMONGKOL T, et al. Voriconazole eye drops: enhanced solubility and stability through ternary voriconazole/sulfobutyl ether β-cyclodextrin/polyvinyl alcohol complexes[J]. Int J Mol Sci, 2023, 24(3): 2343. |
46 | REN L, YANG X, GUO W, et al. Inclusion Complex of docetaxel with sulfobutyl ether β-cyclodextrin: preparation, in vitro cytotoxicity and in vivo safety[J]. Polymers, 2020, 12(10): 2336. |
47 | HU Y, QIU C, QIN Y, et al. Cyclodextrin-phytochemical inclusion complexes: promising food materials with targeted nutrition and functionality[J]. Trends Food Sci Tech, 2021, 109: 398-412. |
48 | ZHANG Y, REN K, HE Z, et al. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin[J]. Carbohydr Polym, 2013, 98(1): 638-643. |
49 | JIANG S, ZHAO T, WEI Y, et al. Preparation and characterization of tea tree oil/ hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit[J]. Food Hydrocoll, 2021, 121(1):107037. |
50 | MICHALSKA P, WOJNICZ A, RUIZ-NUNO A, et al. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: preparation, physical characterization and pharmacological effect[J]. Carbohydr Polym, 2017, 157: 94-104. |
51 | AHAD A, BIN JARDAN Y A, RAISH M, et al. Hydroxypropyl-β-cyclodextrin for delivery of sinapic acid via inclusion complex prepared by solvent evaporation method[J]. Processes, 2022, 10: 2046 . |
52 | PEREVA S, SARAFSKA T, BOGDANOVA S, et al. Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation[J]. J Drug Deliv Sci Tech, 2016, 35: 34-39. |
53 | AYTAC Z, KUSKU S I, DURGUN E, et al. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: slow release and high solubility[J]. Food Chem, 2016, 197: 864-871. |
54 | CID-SAMAMED A, RAKMAI J, MEJUTO J C, et al. Cyclodextrins inclusion complex: preparation methods, analytical techniques and food industry applications[J]. Food Chem, 2022, 384: 132467. |
55 | BAI H, WANG J, PHAN C U, et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment[J]. Nat Commun, 2021, 12(1): 759. |
56 | STENZEL M H D, THOMAS P. Star polymer synthesis using trithiocarbonate functional β-cyclodextrin cores reversible addition-fragmentation chain-transfer polymerization[J]. J Polym Sci Pol Chem, 2002, 40(24): 4498-4512. |
57 | DIGET J S, STÄDE L W, NIELSEN T T. Direct synthesis of well-defined zwitterionic cyclodextrin polymers via atom transfer radical polymerization[J]. Eur Polym J, 2019, 116: 84-90. |
58 | LIU L, TAN Y, BAO Y, et al. A new pH/redox/light stimuli-responsive magnetic molecularly imprinted polymer based on β-cyclodextrin for recognition and controlled release of andrographolide[J]. React Funct Polym, 2023, 182: 105485. |
59 | TIAN B, LIU J. The classification and application of cyclodextrin polymers: a review[J]. New J Chem, 2020, 44(22): 9137-9148. |
60 | WANG D, MU X, CHEN X, et al. Polycyclodextrin as a linker for nanomedicine fabrication and synergistic anticancer application[J]. Carbohydr Polym, 2021, 273: 118608. |
61 | KAWABATA Y, WADA K, NAKATANI M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications[J]. Int J Pharm, 2011, 420(1): 1-10. |
62 | MOUSAZADEH H, BONABI E, ZARGHAMI N. Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy[J]. Carbohydr Polym, 2022, 276: 118747. |
63 | ZHENG K, LIU X, LIU H, et al. Novel pH-triggered doxorubicin-releasing nanoparticles self-assembled by functionalized β-cyclodextrin and amphiphilic phthalocyanine for anticancer therapy[J]. ACS Appl Mater Interfaces, 2021, 13(9): 10674-10688. |
64 | XU M, ZHA H, HAN R, et al. Cyclodextrin-derived ROS-generating nanomedicine with pH-modulated degradability to enhance tumor ferroptosis therapy and chemotherapy[J]. Small, 2022, 18(20): 2200330. |
65 | DAI W, DENG Y, CHEN X, et al. A mitochondria-targeted supramolecular nanoplatform for peroxynitrite-potentiated oxidative therapy of orthotopic hepatoma[J]. Biomaterials, 2022, 290: 121854. |
66 | OHNO Y, TOSHINO M, MOHAMMED A F A, et al. Mannose-methyl-β-cyclodextrin suppresses tumor growth by targeting both colon cancer cells and tumor-associated macrophages[J]. Carbohydr Polym, 2023, 305: 120551. |
67 | PANAGIOTAKIS S, MAVROIDI B, ATHANASOPOULOS A, et al. Small anticancer drug release by light: Photochemical internalization of porphyrin-β-cyclodextrin nanoparticles[J]. Carbohydr Polym, 2023, 306: 120579. |
68 | PILCH J, POTEGA A, KOWALCZYK A, et al. pH-responsive drug delivery nanoplatforms as smart carriers of unsymmetrical bisacridines for targeted cancer therapy[J]. Pharmaceutics, 2023, 15(1):201. |
69 | WEI T, ZHANG Y, LEI M, et al. Development of oral curcumin based on pH-responsive transmembrane peptide-cyclodextrin derivative nanoparticles for hepatoma[J]. Carbohydr Polym, 2022, 277: 118892. |
70 | JIANG S, LI X, ZHANG F, et al. Manganese dioxide-based nanocarrier delivers paclitaxel to enhance chemotherapy against orthotopic glioma through hypoxia relief[J]. Small Methods, 2022, 6(7): e2101531. |
71 | SUN D, ZOU Y, SONG L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer[J]. Acta Pharm Sin B, 2022, 12(1): 378-393. |
72 | LI Y, GAO J, ZHANG C, et al. Stimuli-responsive polymeric nanocarriers for efficient gene delivery[J]. Top Curr Chem, 2017, 375(2): 27. |
73 | YANG Z, GAO D, CAO Z, et al. Drug and gene co-delivery systems for cancer treatment[J]. Biomater Sci, 2015, 3(7): 1035-1049. |
74 | KIM H, HAN J, PARK J H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity[J]. J Control Release, 2020, 319: 77-86. |
75 | XIONG Q, BAI Y, SHI R, et al. Preferentially released miR-122 from cyclodextrin-based star copolymer nanoparticle enhances hepatoma chemotherapy by apoptosis induction and cytotoxics efflux inhibition[J]. Bioact Mater, 2021, 6(11): 3744-3755. |
76 | HU J, LIANG M, YE M, et al. Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy[J]. Carbohydr Polym, 2023, 301: 120365. |
77 | SUN F, ZHU Q, LI T, et al. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer[J]. Adv Sci, 2021, 8(4): 2002746. |
78 | HU X, HOU B, XU Z, et al. Supramolecular prodrug nanovectors for active tumor targeting and combination immunotherapy of colorectal cancer[J]. Adv Sci, 2020, 7(8): 1903332. |
79 | RODELL C B, ARLAUCKAS S P, CUCCARESE M F, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy[J]. Nat Biomed Eng, 2018, 2(8): 578-588. |
80 | YANG K, QI S, YU X, et al. A Hybrid supramolecular polymeric nanomedicine for cascade-amplified synergetic cancer therapy[J]. Angew Chem Int Ed Engl, 2022, 61(27): e202203786. |
[1] | 张万年, 于芳, 赵杉林, 张志强, 何宇鹏. 小分子凝胶的分子动力学模拟和汉森溶解度参数研究进展[J]. 应用化学, 2022, 39(12): 1803-1817. |
[2] | 张伟强, 王晨, 赵玉荣, 王栋, 王继乾, 徐海. 短肽超分子自组装驱动力及调控策略的研究发展[J]. 应用化学, 2022, 39(8): 1190-1201. |
[3] | 李孟微, 王红言, 王莹莹, 康晓颖, 刘美芳, 陈于蓝. 基于偶氮苯-4,4'-二羧酸衍生物的水相超分子自组装[J]. 应用化学, 2021, 38(10): 1362-1370. |
[4] | 曹灵芝, 王钊铄, 王蓓. 纳米生物材料在抗病毒疫苗佐剂中的应用[J]. 应用化学, 2021, 38(5): 572-581. |
[5] | 冯江涛,延卫,徐浩,郑树楠. 1-甲基环丙烯与α-环糊精包合物的合成[J]. 应用化学, 2010, 27(01): 82-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||