应用化学 ›› 2023, Vol. 40 ›› Issue (2): 188-209.DOI: 10.19894/j.issn.1000-0518.220175

• 综合评述 • 上一篇    下一篇

贫电解液下电催化剂对调控锂硫电池性能的研究进展

王路飞1, 甄蒙蒙1(), 沈伯雄2()   

  1. 1.河北工业大学能源与环境工程学院,天津 300401
    2.河北工业大学化工学院,天津 300401
  • 收稿日期:2022-05-10 接受日期:2022-08-04 出版日期:2023-02-01 发布日期:2023-02-27
  • 通讯作者: 甄蒙蒙,沈伯雄
  • 基金资助:
    国家自然科学基金(51702236);河北省自然科学基金(B2021202052)

Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions

Lu-Fei WANG1, Meng-Meng ZHEN1(), Bo-Xiong SHEN2()   

  1. 1.School of Energy and Environmental Engineering,Hebei University of Technology,Tianjin 300071,China
    2.School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300071,China
  • Received:2022-05-10 Accepted:2022-08-04 Published:2023-02-01 Online:2023-02-27
  • Contact: Meng-Meng ZHEN,Bo-Xiong SHEN
  • About author:shenbx@hebut.edu.cn
    zhenmengmeng@hebut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51702236);the Natural Science Foundation of Hebei Province(B2021202052)

摘要:

锂硫电池具有高理论能量密度(2600 Wh/kg)和高理论比容量(1675 mA·h/g),被视为最有可能替代锂离子电池实现商业应用的电化学储能系统之一。然而,锂硫电池所固有的缓慢氧化还原动力学和多硫化物的“穿梭效应”等问题严重影响了锂硫电池的循环性能以及循环寿命。目前,大部分综述主要集中于过量电解液下锂硫电池硫主体材料的设计制备方面,对贫电解液下锂硫电池性能的研究关注较少。基于此,本文介绍了贫电解液下不同电催化剂对锂硫电池氧化还原反应动力学和电化学性能的调控,主要分为非金属催化剂和金属催化剂两类,其中非金属催化剂包括非金属化合物、石墨烯、碳纳米管以及杂原子掺杂碳材料;金属催化剂包括钴基催化剂、钼基催化剂、铁基催化剂以及多金属基异质结构。最后,对推动锂硫电池实现商业应用需要进一步开展的研究提出了思考并进行了展望。

关键词: 高能量密度, 贫电解液, 电催化剂, 反应动力学, 锂硫电池性能

Abstract:

Lithium-sulfur batteries (LSBs) have high theoretical energy density (2600 Wh/kg) and high theoretical specific capacity (1675 mA·h/g) and are regarded as one of the most promising electrochemical energy storage systems to replace lithium-ion batteries for commercial applications. However, the inherent slow redox kinetics and the “shuttle effect” of lithium polysulfides (LiPSs) seriously affect cycle performances of LSBs. At present, most of the reviews focus on the design of sulfur host materials for LSBs under excess electrolyte, researches on improvement of battery performances under lean electrolyte are less. Herein, this paper introduces the regulation of different electrocatalysts on the redox reaction kinetics of LSBs under lean electrolytes. It is mainly divided into two categories: non-metallic catalysts (non-metallic compounds, graphene, carbon nanotubes and heteroatom doped carbon materials) and metal catalysts (cobalt-based, molybdenum-based, iron-based and multi-metal-based heterogeneous structures). Finally, further researches are proposed and prospected to promote the commercial application of LSBs.

Key words: High energy density, Lean electrolyte, Electrocatalysts, Reaction kinetics, Lithium-sulfur battery performances

中图分类号: