1 |
TANG J, LI H, YAN S, et al. In situ synthesis, structure, and properties of a dendritic branched nano-thickening agent for high temperature fracturing fluid [J]. J Appl Polym Sci, 2020, 137(5): 48446.
|
2 |
夏熙, 杨二龙. 页岩气压裂液研究进展及展望[J]. 化学工程师, 2019, 33(7): 59-63.
|
|
XIA X, YANG E L. Research progress and prospect of shale gas fracturing fluid[J]. Chem Eng, 2019, 33(7): 59-63.
|
3 |
黄飞飞, 蒲春生, 陆雷超, 等. 胍胶压裂液高效破胶降解剂体系研究[J]. 应用化工, 2021, 50(5): 1168-1172.
|
|
HUANG F F, PU C S, LU L C, et al. Complex agent system used for the effectively breaking and degrading of the guar gum fracturing fluid[J]. Appl Chem Ind, 2021, 50(5): 1168-1172.
|
4 |
尤佳, 刘金峰, 杨世忠, 等. MEMA10耐低温复合酶活性与破胶性能[J]. 油田化学, 2016, 33(4): 612-618.
|
|
YOU J, LIU J F, YANG S Z, et al. Activity and gel breaking performance of a low-temperature-tolerant complex enzyme MEMA10[J]. Oilfield Chem, 2016, 33(4): 612-618.
|
5 |
安毅, 田哲熙,刘灏亮, 等. 过硫化物对压裂液破胶性能的实验研究[J]. 化学工程师, 2017, 31(7): 15-18.
|
|
AN Y, TIAN Z X, LIU H L,et al. Experimental study on the fracture performance of the fracturing fluid by the over sulfide[J]. Chem Eng, 2017, 31(7): 15-18.
|
6 |
OZKAN E, RAGHAVAN R. A computationally efficient, transient-pressure solution for inclined wells[J]. SPE Reserv Eval Eng, 2000, 3(5): 414-425.
|
7 |
贺晓军, 李君, 李宁涛, 等. 过硫酸铵与生物酶压裂破胶技术对比研究[J]. 石油化工应用, 2012, 31(4): 81-83.
|
|
HE X J, LI J, LI N T, et al. Ammonium persulfate and enzyme technology comparative study gel breaking fracturing[J]. Petrochem Ind Appl, 2012, 31(4): 81-83.
|
8 |
王文军, 张士诚, 温海飞, 等. 浅层水平井超低温压裂液体系研究与应用[J]. 油田化学, 2012, 29(2): 155-158.
|
|
WANG W J, ZHANG S C, WEN H F, et al. Study and application of fracturing fluid for ultra-low temperature in shallow buried fracturing horizontal wells[J]. Oilfield Chem, 2012, 29(2): 155-158.
|
9 |
李风光. 浅层低渗透油气井超低温压裂液体系研究[J]. 油气井测试, 2021, 30(5): 37-43.
|
|
LI F G. Study on ultra-low temperature fracturing fluid system for shallow oil and gas wells with low permeability[J]. Well Testing, 2021, 30(5): 37-43.
|
10 |
韩卓, 郭威, 张太亮, 等. 非常规压裂返排液回注处理实验研究[J]. 石油与天然气化工, 2014, 43(1): 108-112.
|
|
HAN Z, GUO W, ZHANG T L, et al. Experimental study on reinjection treatment of unconventional fracturing flow-back fluid[J].Chem Eng Oil Gas, 2014, 43(1): 108-112.
|
11 |
SRIVASTAVA P K, KAPOOR M. Production, properties, and applications of endo-β-mannanases[J]. Biotechnol Adv, 2017, 35(1): 1-19.
|
12 |
SONI H, GANAIE M A, PRANAW K, et al. Design-of-experiment strategy for the production of mannanase biocatalysts using plamkarnel cake and its application to degrade locust bean and guar gum[J]. Biocatal Agric Biotechnol, 2015, 4(2): 229-234.
|
13 |
MOREIRA L, FILHO E. An overview of mannan structure and mannan-degrading enzyme systems[J]. Appl Microbiol Biotechnol, 2008, 79(2): 165-178.
|
14 |
CAROL M, UTCHEN M C. Characterization of extremely thermostable enzymatic breakers (α-1,6-galactosidase and β-1,4-mannanase) from the hyperthermophilic bacterium Thermotoganeapolitana5068 for hydrolysis of guar gum[J]. Biotechnol Bioeng, 1996, 52(2): 332-339.
|
15 |
KLYOSOV A A, DOTSENKO G S, HINZ S W A, et al. Structural features of β-(1→4)-D-galactomannans of plant origin as a probe for β-(1→4)-mannanase polymeric substrate specificity[J]. Carbohydr Res, 2012, 352: 65-69.
|
16 |
SRIVASTAVA P K, KAPOOR M. Production, properties, and applications of endo-β-mannanases[J]. Biotechnol Adv, 2016, 35(1): 1-19.
|
17 |
张蕊, 朱虹, 周峻沛, 等. β-甘露聚糖酶分子生物学研究进展[J]. 中国农业科技导报, 2018, 20(5): 34-46.
|
|
ZHANG R, ZHU H, ZHOU J P, et al. Research progress on molecular biology of β-mannanases[J]. J Agric Sci Technol, 2018, 20(5): 34-46.
|
18 |
BEHERA S, DEV M J, SINGHAL R S. Cross-linked beta-mannanase aggregates: preparation, characterization, and application for producing partially hydrolyzed guar gum[J]. Appl Biochem Biotechnol, 2022, 194(5): 1981-2004.
|
19 |
COMFORT D A, CHHABRA S R, CONNERS S B, et al. Strategic biocatalysis with hyperthermophilic enzymes[J]. Green Chem, 2004, 6(9): 459-465.
|
20 |
MAHAMMAD S, COMFORT D A, KELLY R M, et al. Rheological properties of guar galactomannan solutions during hydrolysis with galactomannanase and alpha-galactosidase enzyme mixtures[J]. Biomacromolecules, 2007, 8(3): 949.
|
21 |
丁铮, 王静, 潘永强, 等. 生物酶对高黏度压裂返排液破胶处理研究[J]. 现代化工, 2015, 35(12): 71-74.
|
|
DING Z, WANG J, PAN Y Q, et al. Research of enzyme for gel breaking of high viscosity fracturing flow-back fluid[J]. Mod Chem Ind, 2015, 35(12): 71-74.
|
22 |
BLIBECH M, FARHAT-KHEMAKHEM A, KRIAA M, et al. Optimization of beta-mannanase production by Bacillus subtilis US191 using economical agricultural substrates[J]. Biotechnol Prog, 2020, 36(4): 1-9.
|
23 |
CHAUHAN P S, PURI N, SHARMA P, et al. Mannanases: microbial sources, production, properties and potential biotechnological applications[J]. Appl Microbiol Biotechnol, 2012, 93(5): 1817-1830.
|
24 |
DAWOOD A, MA K. Applications of microbial β-mannanases [J]. Front in Bioeng Biotechnol, 2020, 8(598630): 1-17.
|
25 |
郑允志, 王冰, 王兴刚. β-甘露聚糖酶对夏季高温蛋鸡生产性能、蛋品质和养分表观消化率的影响[J]. 中国饲料, 2018(16): 42-45.
|
|
ZHENG Y Z, WANG B, WANG X G. Dietary supplementation of β-mannanase on laying performance, egg qualityand apparent digestibility of nutrients in laying hens under hot climatic condition[J]. China Feed, 2018(16): 42-45.
|
26 |
谈苏慧, 卢海强, 陈伟, 等. 1株产甘露聚糖酶嗜热真菌的鉴定、酶学性质表征及转录组学分析[J]. 食品科学, 2021, 42(18): 65-72.
|
|
TAN S H, LU H Q, CHEN W, et al. Identification, enzymatic characterization and transcriptomic analysis of a mannanase-producing thermophilic fungus[J]. Food Sci, 2021, 42(18): 65-72.
|
27 |
施鑫磊, 方韵颖, 尉俏女, 等. 一种来源于喜热梭孢壳的耐热型β-甘露聚糖酶[J]. 微生物学报, 2021, 61(9): 2815-2828.
|
|
SHI X L, FANG Y Y, WEI Q N, et al. Characterization of a hyperthermostable β-mannanase from Thermothelomyces thermophilus[J].Acta Microbiol Sin, 2021, 61(9): 2815-2828.
|
28 |
谢家仪, 董光军, 刘振英. 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2005, 24(4): 440.
|
|
XIE J Y, DONG G J, LIU Z Y. Method of preparation of microbiological specimen for scanning electron microsope[J]. J Chin Electron Microsc Soc, 2005, 24(4): 440.
|
29 |
MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal Biochem, 1959, 31(3): 426-428.
|
30 |
KATROLIA P, ZHOU P, ZHANG P, et al. High level expression of a novel β-mannanase from Chaetomium sp. exhibiting efficient mannan hydrolysis[J]. Carbohydr Polym, 2012, 87(1): 480-490.
|
31 |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1): 248-254.
|
32 |
DOWNIE B, HILHORST H, BEWLEY J D. A new assay for quantifying endo-beta-D-mannanase activity using congo red dye[J]. Phytochemistry, 1994, 36(4): 829-835.
|
33 |
ZHOU J, ZHANG R, GAO Y, et al. Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain[J]. J Biosci Bioeng, 2012, 113(5): 568-574.
|
34 |
HUANG J L, BAO L X, ZOU H Y, et al. High-level production of a cold-active β-mannanase from Bacillus subtilis BS5 and its molecular cloning and expression[J]. Mol Genet Microbiol Virol, 2012, 27(4): 14-17.
|
35 |
PONGSAPIPATANA N, DAMRONGTEERAPAP P, CHANTORN S, et al. Molecular cloning of kman coding for mannanase from Klebsiella oxytoca KUB-CW2-3 and its hybrid mannanase characters[J]. Enzyme Microb Technol, 2016, 89: 39-51.
|
36 |
YOU J, LIU J F, YANG S Z,et al. Low-temperature-active and salt-tolerant beta-mannanase from a newly isolated Enterobacter sp. strain N18[J]. J. Biosci Bioeng, 2016, 121(2): 140-146.
|
37 |
LI C Y, LIU F F, YE J, et al. A low-temperature active endo-β-1,4-mannanase from Bacillus subtilis TD7 and its gene expression in Escherichia coli[J]. Appl Environ Biostechnol, 2018, 3(2): 17-25.
|
38 |
陈英, 王亚南, 陈绍宁, 等. 用于压裂液的生物酶破胶剂性能评价[J]. 钻井液与完井液, 2010, 27(6): 68-71.
|
|
CHEN Y, WANG Y N, CHEN S N, et al. Evaluation of bio-enzyme breaker used in fracturing fluid[J]. Drill Fluid Completion Fluid, 2010, 27(6): 68-71.
|
39 |
高敏, 江建林. 水基压裂液体系的制备及性能[J]. 石油化工, 2020, 49(12): 1188-1193.
|
|
GAO M, JIANG J L. Preparation and properties of a water-based fracturing fluid system[J]. Petrochem Technol, 2020, 49(12): 1188-1193.
|
40 |
BATTISTEL E, BIANCHI D, FORNAROLI M, et al. Enzymes breakers for viscosity enhancing polymers[J]. J Pet Sci Eng, 2011, 77(1): 10-17.
|
41 |
李军, 王潜, 齐海鹰, 等. 新型生物酶破胶剂的研究与应用[J]. 石油矿场机械, 2008, 37(10): 90-92.
|
|
LI J, WANG Q, QI H Y, et al. Development and application of new biological enzyme gel breaker[J]. Oil Field Equip, 2008, 37(10): 90-92.
|