
应用化学 ›› 2023, Vol. 40 ›› Issue (1): 126-133.DOI: 10.19894/j.issn.1000-0518.220131
张竣杰1, 申云蛟1, 马丽颖1, 王鹏辉1, 王磊1, 戴雨霖2(), 赵雷1(
)
收稿日期:
2022-04-13
接受日期:
2022-09-21
出版日期:
2023-01-01
发布日期:
2023-01-28
通讯作者:
戴雨霖,赵雷
基金资助:
Jun-Jie ZHANG1, Yun-Jiao SHEN1, Li-Ying MA1, Peng-Hui WANG1, Lei WANG1, Yu-Lin DAI2(), Lei ZHAO1(
)
Received:
2022-04-13
Accepted:
2022-09-21
Published:
2023-01-01
Online:
2023-01-28
Contact:
Yu-Lin DAI,Lei ZHAO
About author:
zhaolei@ccucm.edu.cnSupported by:
摘要:
高温高压转化前后西洋参花醇提液经正己烷、氯仿、乙酸乙酯和正丁醇分级萃取后共得10种不同极性组分,通过H9c2心肌细胞损伤模型筛选最佳活性组分,并对其进行抗氧化活性的测定以及化学组成分析,利用液质联用技术检测其处理前后的化学成分。结果表明,提取的10种活性组分中,高温高压转化后西洋参花乙酸乙酯萃取层(PEE)能够有效保护H9c2心肌细胞损伤,显著提高细胞存活率并降低细胞ROS水平,与高温高压转化处理前西洋参花乙酸乙酯层(OEE)相较,二者总体皂苷含量相近且均具有较强的抗氧化活性。通过液质分析,初步确定了PEE中所含高温高压转化裂解生成的Rk1与Rg5更具良好的心肌细胞损伤保护作用。
中图分类号:
张竣杰, 申云蛟, 马丽颖, 王鹏辉, 王磊, 戴雨霖, 赵雷. 液质联用技术分析西洋参花化学成分及H9c2心肌细胞损伤保护作用[J]. 应用化学, 2023, 40(1): 126-133.
Jun-Jie ZHANG, Yun-Jiao SHEN, Li-Ying MA, Peng-Hui WANG, Lei WANG, Yu-Lin DAI, Lei ZHAO. Study on Extract Composition of American Ginseng Flower in Oxidative-Induced H9c2 Cardromyocytes by LC-MS[J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 126-133.
图 1 西洋参花不同极性组分改善H2O2诱导H9c2心肌细胞损伤保护作用
Fig.1 Different polar components of American ginseng flower improve the protective effect in H2O2-induced H9c2 cellsNote: *P<0.05, ** P<0.01, ***P<0.001
图 2 西洋参花不同极性组分降低H2O2诱导H9c2心肌细胞损伤ROS水平作用
Fig.2 Different polar components of American ginseng flower lower the ROS level in H2O2-induced H9c2 cellsNote: *P<0.05, **P<0.01, ***P<0.001
Ingredient content | w(American ginseng flower)/% | w(Original ethyl acetate extracts)/% | w(Processed ethyl acetate extracts)/% |
---|---|---|---|
Moisture | 9.37±0.03 | — | — |
Total ash | 6.19±0.04 | — | — |
Total ginsenosides | — | 43.26±0.21 | 43.57±0.29 |
Total protein | — | 6.32±0.16 | 5.09±0.07 |
Total flavone | — | 2.74±0.20 | 2.05±0.22 |
表1 OEE与PEE化学组成测定
Table 1 Chemical compositions of OEE and PEE
Ingredient content | w(American ginseng flower)/% | w(Original ethyl acetate extracts)/% | w(Processed ethyl acetate extracts)/% |
---|---|---|---|
Moisture | 9.37±0.03 | — | — |
Total ash | 6.19±0.04 | — | — |
Total ginsenosides | — | 43.26±0.21 | 43.57±0.29 |
Total protein | — | 6.32±0.16 | 5.09±0.07 |
Total flavone | — | 2.74±0.20 | 2.05±0.22 |
No. | tR/min | Compound | Found mass | Theoretical mass | Mass error/ (×10-6) | OEE/% | PEE/% |
---|---|---|---|---|---|---|---|
1 | 12.96 | Rg1 | 845.492 1 | 845.490 3 | -1.8 | 0.31 | 0.17 |
2 | 13.44 | Re | 991.550 3 | 991.548 2 | -2.1 | 0.74 | 0.47 |
3 | 14.54 | p-F11 | 799.480 5 | 799.484 4 | -3.9 | 0.95 | 1.6 |
4 | 18.39 | Unknown | 843.476 1 | — | — | 0.22 | 0.57 |
5 | 18.81 | Rf | 845.491 8 | 845.490 4 | -1.4 | 48.32 | 12.91 |
6 | 19.79 | Unknown | 843.476 8 | — | — | 0.23 | 0.82 |
7 | 21.07 | 20(S)-Rg2 | 829.497 4 | 829.495 9 | -1.5 | 14.9 | 8.18 |
8 | 21.59 | 20(R)-Rg2 | 829.497 7 | 829.495 8 | -1.9 | 0.18 | 1.94 |
9 | 37.88 | Rk1 | 811.486 3 | 811.485 1 | -1.2 | 0.18 | 3.2 |
10 | 38.16 | Unknown | 843.475 9 | — | — | 0.02 | 0.88 |
11 | 38.94 | Rg5 | 811.486 5 | 811.485 1 | -1.4 | 0.29 | 3.18 |
表2 负离子模式下LC-MS分析OEE & PEE成分分析
Table 2 Components analysis of OEE & PEE by LC-MS with negative scan mode
No. | tR/min | Compound | Found mass | Theoretical mass | Mass error/ (×10-6) | OEE/% | PEE/% |
---|---|---|---|---|---|---|---|
1 | 12.96 | Rg1 | 845.492 1 | 845.490 3 | -1.8 | 0.31 | 0.17 |
2 | 13.44 | Re | 991.550 3 | 991.548 2 | -2.1 | 0.74 | 0.47 |
3 | 14.54 | p-F11 | 799.480 5 | 799.484 4 | -3.9 | 0.95 | 1.6 |
4 | 18.39 | Unknown | 843.476 1 | — | — | 0.22 | 0.57 |
5 | 18.81 | Rf | 845.491 8 | 845.490 4 | -1.4 | 48.32 | 12.91 |
6 | 19.79 | Unknown | 843.476 8 | — | — | 0.23 | 0.82 |
7 | 21.07 | 20(S)-Rg2 | 829.497 4 | 829.495 9 | -1.5 | 14.9 | 8.18 |
8 | 21.59 | 20(R)-Rg2 | 829.497 7 | 829.495 8 | -1.9 | 0.18 | 1.94 |
9 | 37.88 | Rk1 | 811.486 3 | 811.485 1 | -1.2 | 0.18 | 3.2 |
10 | 38.16 | Unknown | 843.475 9 | — | — | 0.02 | 0.88 |
11 | 38.94 | Rg5 | 811.486 5 | 811.485 1 | -1.4 | 0.29 | 3.18 |
1 | 张正海, 雷慧霞, 钱佳奇, 等. 西洋参的引种简史[J]. 人参研究, 2020, 32(2): 59-62. |
ZHANG Z H, LEI H M, QIAN J Q, et al. Introduction history of Panax quinquefolium L.[J]. Ginseng Res, 2020, 32(2): 59-62. | |
2 | 尹红新. 西洋参花药及原生质体培养研究[D]. 北京: 中国农业科学院, 2015. |
YIN H X. Research on anther and protoplast culture of Panax quinquefolius L.[D]. Beijing: Chinese Academy of Agricltural Sciences, 2015. | |
3 | 孟祥颖, 李向高, 于洋. 国产西洋参花蕾化学成分的研究Ⅰ.人参皂苷的分离、鉴定及含量测定[J]. 吉林农业大学学报, 2000(3): 1-8. |
MENG X Y, LI X G, YU Y. Chemical constituents of flowerbuds of Panax quinquefolium L. culticated in ChinaⅠ. isolation, indentification and content determination of saponins[J]. J Jilin Agric Univ, 2000(3): 1-8. | |
4 | 赵雷. 中药多糖类物质的应用研究与现状分析[J]. 长春中医药大学学报, 2006, 22(3): 67-68. |
ZHAO L. Application research and cstatus analysis of polysaccharides in traditional Chinese medicine[J]. J Changchun Univ Trad Chin Med, 2006, 22(3): 67-68. | |
5 | 刘雪莹, 赵雨, 刘莉, 等. 西洋参花多糖的提取和体外免疫调节作用的研究[J]. 食品工业, 2018, 39(1): 23-25. |
LIU X Y, ZHAO Y, LIU L, et al. The extraction of polysaccharides from American ginseng flower and immunomodulation activities in vitro[J]. Food Ind, 2018, 39(1): 23-25. | |
6 | 马晓宁, 李巍, 赵余庆. 西洋参花蕾总皂苷水解产物中稀有抗肿瘤成分的化学研究[J]. 中草药, 2008, 39(9): 1291-1294. |
MA X N, LI W, ZHAO Y Q. Rare constituents with anti-cancer activity from hydrolytic products in saponins of Panax quinquefolium stems and leaves[J]. Chin Trad Herbal Drugs, 2008, 39(9): 1291-1294. | |
7 | YU J, XU T, LIN H, et al. Comprehensive quality evaluation of American ginseng for different parts and abnormal trait based on the major ginsenoside contents and morphological characteristics[J]. Biomed Res Int, 2021, 2021:8831080. |
8 | 李乐, 谭璐瑩, 王彩霞, 等. 超高效液相色谱-四极杆飞行时间质谱法鉴定西洋参果梗化学成分[J]. 应用化学, 2021, 38(3): 256-270. |
LI L, TAN L Y, WANG C X, et al. Identification of chemical constituents from American ginseng fruit pedicels by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Chin J Appl Chem, 2021, 38(3): 256-270. | |
9 | 李丽, 刘春明, 吴巍, 等. 高效液相色谱-电喷雾质谱联用法测定人参和西洋参的皂苷类成分[J]. 分析化学, 2005, 33(8): 1087-1090. |
LI L, LIU C M, WU W, et al. Analysis of saponins in extract of Panax ginseng and Panax quinquofolium by liquid chromatography-electrospray ionization mass spectrometry[J]. Chin J Anal Chem, 2005, 33(8): 1087-1090. | |
10 | BECCARIA M, CABOOTER D. Current developments in LC-MS for pharmaceutical analysis[J]. Analyst, 2020, 145(4): 1129-1157. |
11 | 张语迟, 刘箬瑶, 刘春明, 等. 利用液质联用技术分析高温处理对人参皂苷的转化规律[J]. 长春师范大学学报, 2022, 41(2): 70-74. |
ZHANG Y C, LIU R Y, LIU C M, et al. Study on the ginsenosides transform regulation of steam ginseng with high temperature by HPLC-ESI-MS[J]. J Changchun Norm Univ, 2022, 41(2): 70-74. | |
12 | DAI Y L, ZHOU D Y, JIANG Y F, et al. 6-Bromohypaphorine isolated from red sea cucumbers Apostichopus japonicus exhibits potent anticancer activity in A549 cancer cell line[J]. Chin J Anal Chem, 2021, 49(12): 43-48. |
13 | ERUSLANOV E, KUSMARTSEV S. Identification of ROS using oxidized DCFDA and flow-cytometry[J]. Methods Mol Biol, 2010, 594: 57-72. |
14 | 叶丽华, 叶倩灵, 章晓红, 等. 优化参麦注射液人参总皂苷含量测定方法[J]. 药学研究, 2017, 36(4): 203-205, 242. |
YE L H, YE Q L, ZHANG X H, et al. Optimization method for the determination of total ginsenosides in Shenmai injection[J]. Chin J Pharm Res, 2017, 36(4): 203-205, 242. | |
15 | 旷春桃, 李湘洲, 汪玉霞, 等. 大叶冬青叶中总黄酮测定方法和提取工艺研究[J]. 食品科学, 2009, 30(6): 49-51. |
KUANG C T, LI X Z, WANG Y X, er al. Study on determination methods and extraction process of total flavonoids in leaves of Ilex latifolia[J]. Chin J Food Sci, 2009, 30(6): 49-51. | |
16 | HUANG F Q, DONG X, YIN X, et al. A mass spectrometry database for identification of saponins in plants[J]. J Chromatogr A, 2020, 1625: 461296. |
17 | 戴雨霖, 越皓, 孙长江, 等. 高分离度快速液相色谱-四极杆-飞行时间质谱法分析酒制和醋制人参的皂苷类成分[J]. 分析化学, 2015, 43(8): 1181-1186. |
DAI Y L, YUE H, SUN C J, et al. Determination of ginsenosides in processed ginseng by rapid resolution liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. Chin J Anal Chem, 2015, 43(8): 1181-1186. | |
18 | 乔梦丹, 刘尚, 张琰, 等. 基于UPLC-Q-Orbitrap MS/MS研究人参皂苷在发酵过程中的生物转化[J]. 高等学校化学学报, 2018, 39(2): 219-225. |
QIAO M D, LIU S, ZHANG Y, et al. Biotransformation of ginsenosides in fermented ginseng using UPLC-Q-Orbitrap MS/MS[J]. Chem J Chin Univ, 2018, 39(2): 219-225. | |
19 | 黄鑫, 王妮, 张勇, 等. 超高效液相色谱-四极杆静电场轨道阱高分辨质谱联用法分析不同西洋参加工品的皂苷类成分[J]. 分析测试学报, 2018, 37(6): 646-652. |
HUANG X, WANG N, ZHANG Y, et al. Analysis of ginsenosides in different processed Panax quinquefoliums L. roots by UPLC Orbitrap HRMS[J]. Chin J Instru Anal, 2018, 37(6): 646-652. | |
20 | 关大朋, 王欢, 李伟, 等. 高温热裂解人参皂苷Rk1和Rg5的制备工艺优化[J]. 上海中医药杂志, 2015, 49(1): 91-95. |
GUANG D P, WANG H, LI W, et al. Optimization of preparing technology of ginsenoside Rk1 and Rg5 by high-temperature pyrolysis[J]. Shanghai J Trad Chin Med, 2015, 49(1): 91-95. | |
21 | 张楠淇. PF11滴丸抗心肌缺血作用及其药代动力学研究[D]. 长春: 吉林大学, 2018. |
ZHANG N Q. Study on the anti-myocardial ischemia effect and pharmacokinetics of PF11 pills[D]. Changchun: Jilin University, 2018. | |
22 | 刘月阳, 高永峰, 杨静玉, 等. 拟人参皂苷-F11对大鼠血栓栓塞性脑卒中的防治作用及血栓性炎症相关调控机制[J]. 中国药理学与毒理学杂志, 2021, 35(10): 792. |
LIU Y Y, GAO Y F, YANG J Y, et al. The preventive effect of pseudoginsenoside-F11 on thromboembolic stroke in rats and the related regulatory mechanism of thrombotic inflammation[J]. Chin J Pharm Toxicio, 2021, 35(10): 792. | |
23 | 赵翔宇, 何振宇, 宰守峰. 人参皂苷Rg5对胃癌细胞周期和侵袭的影响及其机制[J]. 中国应用生理学杂志, 2020, 36(1): 51-55. |
ZHAO X Y, HE Z Y, ZAI S F. Effects of ginsenoside Rg5 on cell cycle and invasion of gastric cancer[J]. Chin J Appl Physiol, 2020, 36(1): 51-55. | |
24 | 郭慧, 刘鹏飞. 人参皂苷Rg5通过抑制蛋白激酶B信号通路调控肝癌HepG2细胞生物学行为[J]. 安徽医药, 2021, 25(6): 1095-1099, 1275. |
GUO H, LIU P F. Ginsenoside Rg5 regulates the biological behavior of hepatocellular carcinoma HepG2 cells by inhibiting AKT signaling pathway[J]. Anhui Med Pharm J, 2021, 25(6): 1095-1099, 1275. | |
25 | 叶安琪, 张仔豪, 成乐琴. 人参皂苷Rg5的研究进展[J]. 沈阳药科大学学报, 2020, 37(12): 1144-1152. |
YE A Q, ZHANG Z H, CHENG Y Q. Research progress of ginsenoside Rg5[J]. J Shenyang Pharm Univ, 2020, 37(12): 1144-1152. | |
26 | 曾露露, 丁传波, 刘文丛, 等. 人参稀有皂苷药理活性的研究进展[J]. 时珍国医国药, 2018, 29(3): 680-682. |
ZENG L L, DING C B, LIU W C, et al. Research progress on the pharmacological activity of rare ginsenoside[J]. Lishizhen Med Mater Med Res, 2018, 29(3): 680-682. |
[1] | 沈彦龙, 程立业, 孟祥茹, 李琼, 杜连云, 王恩鹏, 陈长宝. 人参连作土壤对不同生育期人参生长发育及抗氧化系统的影响[J]. 应用化学, 2023, 40(1): 109-115. |
[2] | 王恩鹏, 杜连云, 姜涛, 李光, 魏琨, 朱爽, 越皓, 陈长宝. 洗参水美白与抗氧化活性及其皂苷类成分分析[J]. 应用化学, 2021, 38(3): 289-297. |
[3] | 张慧娥, 侯剑峰, 王经元, 朱爽, 杜连云, 叶萍, 魏琨, 陈长宝, 李光, 王恩鹏. 人参不同部位提取物体外抗氧化活性及成分差异[J]. 应用化学, 2021, 38(11): 1531-1540. |
[4] | 高明, 赵开东, 刘祥永, 金元哲. 二硫化钼纳米材料的制备及其对心肌细胞的保护作用[J]. 应用化学, 2020, 37(9): 1010-1021. |
[5] | 陈琳, 闵曼, 林吉娣. 3-氨基-7,8-二甲氧基香豆素及其衍生物的合成及抗氧化活性[J]. 应用化学, 2020, 37(12): 1420-1425. |
[6] | 金宇婷, 支德福, 郭永泰, 隋悦, 孙蕾, 王倩, 赵龙铉, 赵春晖. 酚类衍生物的美白和抗氧化活性[J]. 应用化学, 2019, 36(11): 1257-1265. |
[7] | 丰翠,闵曼,谢蓉蓉,任建辉,陈琳. 香豆素基Schiff碱类化合物的合成及抗氧化性能[J]. 应用化学, 2018, 35(5): 538-543. |
[8] | 张连生, 唐豫媛, 王萃娟, 熊霄阳, 李泽贤, 陈志斌. 2,2'-联苯二羧酸配合物的合成、表征及性质[J]. 应用化学, 2018, 35(4): 442-448. |
[9] | 郑飞, 王微, 于珊珊, 戴雨霖, 刘尚, 文连奎, 越皓. 高效液相色谱-飞行时间质谱联用法分析人参及人参皂苷与山楂配伍过程中的水解行为[J]. 应用化学, 2017, 34(6): 723-728. |
[10] | 丁昊, 晏菲, 郑雯静, 郭维亮, 苏彬. 二氧化硅纳米均孔膜修饰电极检测化妆水中的抗氧化剂[J]. 应用化学, 2017, 34(11): 1307-1313. |
[11] | 丁昊, 晏菲, 郑雯静, 郭维亮, 苏彬. 二氧化硅纳米均孔膜修饰电极检测化妆水中的抗氧化剂[J]. 应用化学, 2017, 34(11): 0-0. |
[12] | 卫强, 彭喜悦. 碧桃花、叶、茎、果实挥发油成分及抗油脂氧化、抑菌作用[J]. 应用化学, 2016, 33(8): 945-950. |
[13] | 段志芳,邵玲. 含水杨醛席夫碱结构的黄酮衍生物的固相合成与抗氧化及抗菌活性[J]. 应用化学, 2015, 32(9): 1005-1013. |
[14] | 杨龙强, 李荣春, 梁少平. 新型壳聚糖双季铵盐的制备及其抗氧化活性[J]. 应用化学, 2015, 32(3): 322-326. |
[15] | 段志芳, 张少平, 付莉, 李充璧. 橙皮素席夫碱类衍生物的合成及抗氧化作用[J]. 应用化学, 2014, 31(05): 513-519. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 563
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 326
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||