应用化学 ›› 2022, Vol. 39 ›› Issue (7): 1039-1051.DOI: 10.19894/j.issn.1000-0518.210341
薛晨怡1, 刘林佳1, 王婷1, 宫磊1, 金龙1, 韩建刚1,2, 李胎花1,2()
收稿日期:
2021-07-13
接受日期:
2021-10-19
出版日期:
2022-07-01
发布日期:
2022-07-11
通讯作者:
李胎花
基金资助:
Chen-Yi XUE1, Lin-Jia LIU1, Ting WANG1, Lei GONG1, Long JIN1, Jian-Gang HAN1,2, Tai-Hua LI1,2()
Received:
2021-07-13
Accepted:
2021-10-19
Published:
2022-07-01
Online:
2022-07-11
Contact:
Tai-Hua LI
About author:
taehwali@njfu.edu.cnSupported by:
摘要:
铅作为一种重金属,广泛应用于工业生产,对环境和人体健康具有显著影响。因此,开发铅离子检测技术是一项具有重要意义的研究内容。荧光法与传统重金属离子检测方法相比,具有灵敏度高、选择性好等优点,故荧光法常用于水体等实际样品中重金属离子的定性或定量分析。本文围绕近几年报道的基于荧光法检测铅离子的研究现状进行介绍,包括荧光染料、荧光纳米材料、荧光生物材料包括荧光蛋白等3种检测材料,并在此基础上提出荧光法检测铅离子领域面临的主要挑战,对未来的研究趋势进行了展望。
中图分类号:
薛晨怡, 刘林佳, 王婷, 宫磊, 金龙, 韩建刚, 李胎花. 荧光法检测重金属铅离子的研究进展[J]. 应用化学, 2022, 39(7): 1039-1051.
Chen-Yi XUE, Lin-Jia LIU, Ting WANG, Lei GONG, Long JIN, Jian-Gang HAN, Tai-Hua LI. Research Progress on Fluorescence Detection of Heavy Metal Lead Ion[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1039-1051.
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
香豆素类 Coumarins | 香豆素?三唑类 Coumarin?triazole | 0~20 μmol/L | 1.9 nmol/L | [ |
罗丹明类 Rhodamines | 罗丹明B衍生物 Rhodamine B derivatives | 1~10 μmol/L | - | [ |
罗丹明6G衍生物 Rhodamine 6G derivatives | 0.01~10 μmol/L | 2.7 nmol/L | [ | |
喹啉类 Quinolines | 8?氨基喹啉 8?Aminoquinoline | 1~100 μmol/L | 1 μmol/L | [ |
喹啉?吗啡缀合物 Quinoline?morphine conjugate | 0~70 μmol/L | 13 μmol/L | [ | |
其它 Others | SYBR GreenⅠ | 2~50 nmol/ L | 0.7 nmol/L | [ |
FAM/DABCYL | 5~100 nmol/L | 3.1 nmol/L | [ | |
FAM DFHBI?SRNA Cy3/GO Cy5/MWCNT | 0.05~200 nmol/L 5~500 nmol/L 0.5 nmol/L~2 μmol/L 20~150 nmol/L | 0.01 nmol/L 6 nmol/L 0.5 nmol/L 20 nmol/L | [ [ [ [ |
表1 荧光染料类检测铅离子
Table 1 Fluorescent dyes for detection of lead ion
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
香豆素类 Coumarins | 香豆素?三唑类 Coumarin?triazole | 0~20 μmol/L | 1.9 nmol/L | [ |
罗丹明类 Rhodamines | 罗丹明B衍生物 Rhodamine B derivatives | 1~10 μmol/L | - | [ |
罗丹明6G衍生物 Rhodamine 6G derivatives | 0.01~10 μmol/L | 2.7 nmol/L | [ | |
喹啉类 Quinolines | 8?氨基喹啉 8?Aminoquinoline | 1~100 μmol/L | 1 μmol/L | [ |
喹啉?吗啡缀合物 Quinoline?morphine conjugate | 0~70 μmol/L | 13 μmol/L | [ | |
其它 Others | SYBR GreenⅠ | 2~50 nmol/ L | 0.7 nmol/L | [ |
FAM/DABCYL | 5~100 nmol/L | 3.1 nmol/L | [ | |
FAM DFHBI?SRNA Cy3/GO Cy5/MWCNT | 0.05~200 nmol/L 5~500 nmol/L 0.5 nmol/L~2 μmol/L 20~150 nmol/L | 0.01 nmol/L 6 nmol/L 0.5 nmol/L 20 nmol/L | [ [ [ [ |
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
半导体量子点 Quantum Dots (QDs) | CdTe@GSH ZnS QDs CdS@Cys | 0.5~500 nmol/L 5~100 μmol/L 1~15 nmol/L | 0.1 nmol/L 2.45 μmol/L 3 nmol/L | [ [ [ |
碳点/碳量子点 Carbon Dots/Carbon Quantum Dots (CDs/CQDs) | BCDs/RCDs G?CDs SN?CDs CDAu rGQDs/GO?适体 DTC?AuNPs/GQDs | 0~200 nmol/L 0~50 μmol/L 2~50 μmol/L 0.0005~0.46 μmol/L 9.9~435 nmol/L 0.5~100 μmol/L | 2.89 nmol/L 0.025 μmol/L 0.2 μmol/L 0.25 nmol/L 0.6 nmol/L 0.35 μmol/L | [ [ [ [ [ [ |
荧光纳米簇 Fluorescent Nanoclusters | dsDNA?CuNCs CuNCs@GSH AT24?CuNCs 发夹型DNA?AgNCs PMAA?AgNCs AuNC@BSA | 5~100 nmol/L 200~700 μmol/L 0~150 pmol/L 0.1~100 μmol/L 0~1 μmol/L 0.00483~48.3 μmol/L | 5 nmol/L 106 μmol/L 5.2 pmol/L 10 nmol/L 60 nmol/L 4.83 nmol/L | [ [ [ [ [ [ |
金属有机骨架 Metal?organic Framework (MOF) | Zn?MOF MOF?5?NH2 Ti?MOF | 1~10 μmol/L 10~100 μmol/L 0~11 nmol/L | 32.6 nmol/L 0.25 μmol/L 7.7 pmol/L | [ [ [ |
上转换荧光纳米颗粒 Upconversion Nanoparticles (UCNP) | PEI?UCNP/MUA?AuNP UCNP?适体/AuNP?cDNA UCNP/MNP?AuNP UCNP/BHQ1?DNAzyme | 0.5~10 mmol/L 0.1~100 nmol/L 25~1400 nmol/L 0.1~10 nmol/L | 20 nmol/L 50 pmol/L 5.7 nmol/L 0.097 nmol/L | [ [ [ [ |
表 2 荧光纳米材料检测铅离子
Table 2 Fluorescent nanomaterials for detection of lead ion
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
半导体量子点 Quantum Dots (QDs) | CdTe@GSH ZnS QDs CdS@Cys | 0.5~500 nmol/L 5~100 μmol/L 1~15 nmol/L | 0.1 nmol/L 2.45 μmol/L 3 nmol/L | [ [ [ |
碳点/碳量子点 Carbon Dots/Carbon Quantum Dots (CDs/CQDs) | BCDs/RCDs G?CDs SN?CDs CDAu rGQDs/GO?适体 DTC?AuNPs/GQDs | 0~200 nmol/L 0~50 μmol/L 2~50 μmol/L 0.0005~0.46 μmol/L 9.9~435 nmol/L 0.5~100 μmol/L | 2.89 nmol/L 0.025 μmol/L 0.2 μmol/L 0.25 nmol/L 0.6 nmol/L 0.35 μmol/L | [ [ [ [ [ [ |
荧光纳米簇 Fluorescent Nanoclusters | dsDNA?CuNCs CuNCs@GSH AT24?CuNCs 发夹型DNA?AgNCs PMAA?AgNCs AuNC@BSA | 5~100 nmol/L 200~700 μmol/L 0~150 pmol/L 0.1~100 μmol/L 0~1 μmol/L 0.00483~48.3 μmol/L | 5 nmol/L 106 μmol/L 5.2 pmol/L 10 nmol/L 60 nmol/L 4.83 nmol/L | [ [ [ [ [ [ |
金属有机骨架 Metal?organic Framework (MOF) | Zn?MOF MOF?5?NH2 Ti?MOF | 1~10 μmol/L 10~100 μmol/L 0~11 nmol/L | 32.6 nmol/L 0.25 μmol/L 7.7 pmol/L | [ [ [ |
上转换荧光纳米颗粒 Upconversion Nanoparticles (UCNP) | PEI?UCNP/MUA?AuNP UCNP?适体/AuNP?cDNA UCNP/MNP?AuNP UCNP/BHQ1?DNAzyme | 0.5~10 mmol/L 0.1~100 nmol/L 25~1400 nmol/L 0.1~10 nmol/L | 20 nmol/L 50 pmol/L 5.7 nmol/L 0.097 nmol/L | [ [ [ [ |
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
荧光蛋白 Fluorescence Protein | GFP | 3.4~97 nmol/L | 1.7 nmol/L | [ |
其它 Others | Met?leads 1.59 | 0.1~100 μmol/L | 0.5 μmol/L | [ |
Met?lead 1.44 M1 | 0.01~10 μmol/L | 10 nmol/L | [ |
表3 蛋白类检测铅离子
Table 3 Protein?based lead ion detection
类型 Type | 荧光探针 Fluorescent probe | 线性范围 Linear range | 检出限 LOD | 参考文献 Ref. |
---|---|---|---|---|
荧光蛋白 Fluorescence Protein | GFP | 3.4~97 nmol/L | 1.7 nmol/L | [ |
其它 Others | Met?leads 1.59 | 0.1~100 μmol/L | 0.5 μmol/L | [ |
Met?lead 1.44 M1 | 0.01~10 μmol/L | 10 nmol/L | [ |
1 | 乔增运, 李昌泽, 周正, 等. 铅毒性危害及其治疗药物应用的研究进展[J]. 毒理学杂志, 2020, 34(5): 416-420. |
QIAO Z Y, LI C Z, ZHOU Z, et al. Research progress of lead toxicity and its therapeutic drug application[J]. Health Toxicol, 2020, 34(5): 416-420. | |
2 | 李红婷, 董然. 铅在4种宿根花卉中的亚细胞分布及迁移转化特点[J]. 南京林业大学学报(自然科学版), 2015, 39(4): 57-62. |
LI H T, DONG R. Migration and transformation characteristics and subcellular distribution of lead in four perennial flowering plants[J]. Nanjing For Univ (Nat Sci Ed), 2015, 39(4): 57-62. | |
3 | GUO Y, LI X, FAN D, et al. Lysobacter may drive the hormetic effects of Pb on soil alkaline phosphatase[J]. Environ Sci Pollut Res, 2020, 27(15): 17779-17788. |
4 | FAN D, SUN J, LIU C, et al. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb[J]. Sci Total Environ, 2021, 783: 147494. |
5 | 左花. 铅的检测方法研究进展[J]. 湖南有色金属, 2020, 36(4): 77-80. |
ZUO H. Research progress on lead detection method[J]. Hunan Nonferrous Met, 2020, 36(4): 77-80. | |
6 | 纪雪峰, 单斌, 王莎莎, 等. 荧光探针在水中重金属离子检测中的应用研究进展[J]. 青岛理工大学学报, 2021, 42(1): 109-118. |
JI X F, SHAN B, WANG S S, et al. Application research progress of fluorescent probe in the detection of heavy metal ions in water[J]. Qingdao Technol Univ, 2021, 42(1): 109-118. | |
7 | 冷玲, 李壹, 熊晓辉. 重金属检测荧光传感技术的研究进展[J]. 食品工业科技, 2016, 37(15): 380-384, 389. |
LENG L, LI L, XIONG X H. Study on fluorescent chemosensors for heavy metal ions[J]. Sci Technol Food Ind, 2016, 37(15): 380-384, 389. | |
8 | LI T, BYUN J Y, KIM B B, et al. Label-free homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence of antibodies[J]. Biosens Bioelectron, 2013, 42: 403-408. |
9 | LI T, CHOI Y H, SHIN Y B, et al. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo a pyrene (BaP) in aqueous solutions[J]. Chemosphere, 2016, 150: 407-413. |
10 | ARACHCHILAGE A P W, WANG F, FEYER V, et al. X-ray photoemission spectra and electronic structure of coumarin and its derivatives[J]. Phys Chem A, 2016, 120(36): 7080-7087. |
11 | NAZIR R, STASYUK A J, GRYKO D T. Vertically pi-expanded coumarins: the synthesis and optical properties[J]. J Org Chem, 2016, 81(22): 11104-11114. |
12 | TASIOR M, KIM D, SINGHA S, et al. Pi-expanded coumarins: synthesis, optical properties and applications[J]. J Mater Chem C, 2015, 3(7): 1421-1446. |
13 | WU G F, LI M X, ZHU J J, et al. A highly sensitive and selective turn-on fluorescent probe for Pb(Ⅱ) ions based on a coumarin-quinoline platform[J]. RSC Adv, 2016, 6(103): 100696-100699. |
14 | SHAILY, KUMAR A, PARVEEN I, et al. Highly selective and sensitive coumarin-triazole-based fluorometric “turn-off” sensor for detection of Pb2+ ions[J]. Luminescence, 2018, 33(4): 713-721. |
15 | ZHANG L Z, WANG J Y, FAN J L, et al. A highly selective, fluorescent chemosensor for bioimaging of Fe3+[J]. Bioorg Med Chem Lett, 2011, 21(18): 5413-5416. |
16 | LI L Q, MENG L P. Novel rhodamine derivate as high selective detection lead sensor[J]. Spectrochim Acta, Part A, 2014, 122: 772-775. |
17 | WAN J, ZHANG K, LI C, et al. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion[J]. Sens Actuators B: Chem, 2017, 246: 696-702. |
18 | BHATT K D, SHAH H D, PANCHAL M. A switch-off fluorescence probe towards Pb(Ⅱ) and Cu(Ⅱ) ions based on a calix 4 pyrrole bearing amino-quinoline group[J]. Luminesc, 2017, 32(8): 1398-1404. |
19 | VELMURUGAN K, VICKRAM R, JIPSA C V, et al. Quinoline based reversible fluorescent probe for Pb2+; applications in milk, bioimaging and INHIBIT molecular logic gate[J]. Food Chem, 2021, 348: 129098. |
20 | 刘萍, 刘竹苗, 李红艳, 等. 基于核酸外切酶Ⅲ和G-四链体无标记检测Pb2+的荧光传感器[J]. 分析试验室, 2020, 39(8): 885-889. |
LIU P, LIU Z M, LI H Y, et al. A label fluorescence sensor for the detection of Pb2+ based on exonuclease Ⅲ and G-quadruplex[J]. Chinese J Anal Lab, 2020, 39(8): 885-889. | |
21 | LI H, ZHANG Q, CAI Y, et al. Single-stranded DNAzyme-based Pb2+ fluorescent sensor that can work well over a wide temperature range[J]. Biosens Bioelectron, 2012, 34(1): 159-164. |
22 | 刘涛, 李丹, 梁杰, 等. 基于核酸外切酶Ⅲ及DNAzyme的铅离子荧光传感器的研究[J]. 分析化学, 2020, 48(2): 248-254. |
LIU T, LI D, LIANG J, et al. A fluorescence biosensor for lead ion detection based on DNAzyme and exonuclease Ⅲ[J]. Chinese J Anal Chem, 2020, 48(2): 248-254. | |
23 | DASGUPTA S, SHELKE S A, LI N S, et al. Spinach RNA aptamer detects lead(Ⅱ) with high selectivity[J]. Chem Commun, 2015, 51(43): 9034-9037. |
24 | WEN Y Q, PENG C, LI D, et al. Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range[J]. Chem Commun, 2011, 47(22): 6278-6280. |
25 | WANG S E, SI S H. Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis[J]. Anal Methods, 2013, 5(12): 2947-2953. |
26 | SINGH H, BAMRAH A, BHARDWAJ S K, et al. Nanomaterial-based fluorescent sensors for the detection of lead ions[J]. J Hazard Mater, 2021, 407: 124379. |
27 | ZHANG J, CHENG F, LI J, et al. Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives[J]. Nano Today, 2016, 11(3): 309-329. |
28 | DE ACHA N, ElOSUA C, CORRES J M, et al. Fluorescent sensors for the detection of heavy metal ions in aqueous media[J]. Sensors, 2019, 19(3) : 599. |
29 | 毕明刚, 张纪梅. 半导体量子点的研究进展[J]. 化工新型材料, 2020, 48(11): 24-29, 34. |
BI M G, ZHANG J M. Progress on semiconductor quantum dot[J]. New Chem Mater, 2020, 48(11): 24-29, 34. | |
30 | 师赛鸽, 王松玮, 张云翔. 谷胱甘肽碲化镉量子点的合成及痕量铅离子检测[J]. 信阳师范学院学报(自然科学版), 2020, 33(1): 124-128. |
SHI S G, WANG S W, ZHANG Y X. Synthesis of CdTe@GSH quantum dots and its application in detection of trace lead ion[J]. J Xinyang Norm Univ (Nat Sci Ed), 2020, 33(1): 124-128. | |
31 | JACOB J M, RAJAN R, KURUP G G. Biologically synthesized ZnS quantum dots as fluorescent probes for lead(Ⅱ) sensing[J]. Luminescence, 2020, 35(8): 1328-1337. |
32 | SATNAMI M L, VAISHANAV S K, NAGWANSHI R, et al. Spectrofluorometric determination of mercury and lead by colloidal CdS nanomaterial[J]. J Dispersion Sci Technol, 2016, 37(2): 196-204. |
33 | 霍爱玲, 陈金慧, 甄艳, 等. 无机纳米颗粒在植物转化中的应用[J]. 南京林业大学学报(自然科学版), 2016, 40(6): 162-166. |
HUO A L, CHEN J H, ZHEN Y, et al. Inorganic nanoparticles as delivery vectors for plant transformation[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(6): 162-166. | |
34 | 孟维雪, 杨柏, 卢思宇. 从碳点到碳化聚合物点:发展和挑战[J]. 发光学报, 2021, 42(8): 1075-1094, 1072. |
MENG W X, YANG B, LU S Y. From carbons dots to carbonized polymer dots: development and challenges[J]. Chinese J Lumin, 2021, 42(8): 1075-1094, 1072. | |
35 | WANG H, YANG L, CHU S, et al. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device[J]. Anal Chem, 2019, 91(14): 9292-9299. |
36 | 康玉, 任国栋, 侯笑雨, 等. 发绿色荧光碳点的制备并用于Pb2+的灵敏检测和细胞成像[J]. 化学研究与应用, 2020, 32(1): 32-39. |
KANG Y, REN G D, HOU X Y, et al. Preparation of carbon dots with green fluorescence for highly sensitive detection for lead ions and cell imaging[J]. Chem Res Appl, 2020, 32(1): 32-39. | |
37 | 丁志杰, 魏居孟, 郭雨, 等. 硫氮共掺杂碳量子点荧光识别Pb 2+[J]. 分析试验室, 2018, 37(9): 1045-1048. |
DING Z J, WEI J M, GUO Y, et al. Fluorescent recognition of lead(Ⅱ) ions with the sulfur- and nitrogen-co-doped carbon quantum dots[J]. Chinese J Anal Lab, 2018, 37(9): 1045-1048. | |
38 | LI D, YUAN X, LI C, et al. A novel fluorescence aptamer biosensor for trace Pb(Ⅱ) based on gold-doped carbon dots and DNAzyme synergetic catalytic amplification[J]. Lumin, 2020, 221: 117056. |
39 | QIAN Z S, SHAN X Y, CHAI L J, et al. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead(Ⅱ) ion[J]. Biosens Bioelectron, 2015, 68: 225-231. |
40 | 薛晓洁, 雷茹淋, 张帆, 等. 基于功能化纳米金和石墨烯量子点的比色/荧光双信号检测Pb2+研究[J]. 湖北大学学报(自然科学版), 2020, 42(6): 669-674, 692. |
XUE X J, LEI R L, ZHANG F, et al. A sensitive dual-signaling probes for lead ions detection based on inner filter effect of functionalizing gold nanoparticles on the fluorescence of graphene quantum dots[J]. J Hubei Univ (Nat Sci Ed), 2020, 42(6): 669-674, 692. | |
41 | MOLAEI M J. Principles, mechanisms, and application of carbon quantum dots in sensors: a review[J]. Anal Methods, 2020, 12(10): 1266-1287. |
42 | CHEN J, LIU J, FANG Z, et al. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection[J]. Chem Commun, 2012, 48(7): 1057-1059. |
43 | 韩冰雁, 侯绪芬, 相荣超, 等. 基于铜纳米簇的聚集诱导发光检测铅离子[J]. 分析化学, 2017, 45(1): 23-27. |
HAN B Y, HOU X F, XIANG R C, et al. Detection of lead ion based on aggregation-induced emission of copper nanoclusters[J]. Chinese J Anal Chem, 2017, 45(1): 23-27. | |
44 | 欧丽娟, 黄稷科, 吕小龙, 等. 双链铜纳米簇用于铅离子的超灵敏非标记检测[J]. 分析试验室, 2016, 35(8): 899-902. |
OU L J, HUANG J K, LV X L, et al. DsDNA-templated fluorescent copper nanoclusters for ultrasensitive label-free detection of Pb2+ ion[J]. Chinese J Anal Lab, 2016, 35(8): 899-902. | |
45 | 蔺超, 宫贺, 范楼珍, 等. DNA/银纳米簇荧光探针在检测Pb2+中的应用[J]. 化学学报, 2014, 72(6): 704-708. |
LIN C, GONG H, FAN L Z, et al. Application of DNA/Ag nanocluster fluorescent probe for the detection of Pb2+[J]. Acta Chim Sin, 2014, 72(6): 704-708. | |
46 | BURRATTI L, CIOTTA E, BOLLI E, et al. Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water[J]. Colloids Surf A, 2019, 579: 123634. |
47 | NATH P, CHATTERJEE M, CHANDA N. Dithiothreitol-facilitated synthesis of bovine serum albumin-gold nanoclusters for Pb(II) ion detection on paper substrates and in live cells[J]. ACS Appl Nano Mater, 2018, 1(9): 5108-5118. |
48 | LI Z, SUN Q, ZHU Y, et al. Ultra-small fluorescent inorganic nanoparticles for bioimaging[J]. J Mater Chem B, 2014, 2(19): 2793-2818. |
49 | 杨岳, 关成立, 曾取, 等. 金属有机骨架材料MOFs的结构及合成研究[J]. 化工技术与开发, 2021, 50(4): 18-20, 45. |
YANG Y, GUANG C L, ZENG Q, et al. Study on structure and synthsis of metal-organic framework[J]. Technol Dev Chem Ind, 2021, 50(4): 18-20, 45. | |
50 | 初红涛, 姚冬, 陈嘉琪, 等. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120. |
CHU H T, YAO D, CHEN J Q, et al. Research progress of metal-organic framework materials as fluorescent probes[J]. Mater Rev, 2020, 34(13): 13114-13120. | |
51 | HE J, CHEN G. A fluorescent Zn(Ⅱ)-organic framework for selective detection of Pb2+ and a protective effect in osteoarthritis treatment by reducing ROS accumulation and apoptosis in chondrocytes[J]. J Coord Chem, 2020, 73(3): 393-403. |
52 | AN X, TAN Q, PAN S, et al. A turn-on luminescence probe based on amino-functionalized metal-organic frameworks for the selective detections of Cu2+, Pb2+ and pyrophosphate[J]. Spectrochim Acta A, 2021, 247: 119073. |
53 | VENKATESWARLU S, REDDY A S, PANDA A, et al. Reversible fluorescence switching of metal-organic framework nanoparticles for use as security ink and detection of Pb2+ ions in aqueous media[J]. ACS Appl Nano Mater, 2020, 3(4): 3684-3692. |
54 | SAMANTA P, LET S, MANDAL W, et al. Luminescent metal-organic frameworks (LMOFs) as potential probes for the recognition of cationic water pollutants[J]. Inorg Chem Front, 2020, 7(9): 1801-1821. |
55 | LI H, WANG X, HUANG D, et al. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications[J]. Nanotechnology, 2020, 31(7): 072001. |
56 | ZHANG Y, WU L, TANG Y, et al. An upconversion fluorescence based turn-on probe for detecting lead(Ⅱ) ions[J]. Anal Methods, 2014, 6: 9073-9077. |
57 | WU S, DUAN N, SHI Z, et al. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+[J]. Talanta, 2014, 128: 327-336. |
58 | CHEN M, HASSAN M, LI H, et al. Fluorometric determination of lead(Ⅱ) by using aptamer-functionalized upconversion nanoparticles and magnetite-modified gold nanoparticles[J]. Microchim Acta, 2020, 187(1): 85. |
59 | HUANG L, CHEN F, ZONG X, et al. Near-infrared light excited UCNP-DNAzyme nanosensor for selective detection of Pb2+ and in vivo imaging[J]. Talanta, 2021, 227: 122156. |
60 | KUO S Y, LI H H, WU P J, et al. Dual Colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells[J]. Anal Chem, 2015, 87(9): 4765-4771. |
61 | FUTRA D, HENG L Y, AHMAD A, et al. An optical biosensor from green fluorescent escherichia coli for the evaluation of single and combined heavy metal toxicities[J]. Sensors, 2015, 15(6): 12668-12681. |
62 | CHIU T Y, YANG D M. Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator[J]. Toxicol Sci, 2012, 126(2): 436-445. |
63 | YANG D M, FU T F, LIN C S, et al. High-performance FRET biosensors for single-cell and in vivo lead detection[J]. Biosens Bioelectron, 2020, 168: 112571. |
64 | 李慧圆, 雷春阳, 黄燕, 等. 荧光蛋白结构改造及其生物传感应用[J]. 高等学校化学学报, 2020, 41(11): 2324-2334. |
LI H Y, LEI C Y, HUANG Y, et al. Structural modification of fluorescent proteins and their applications in biosensing[J]. Chem J Chinese Univ, 2020, 41(11): 2324-2334. | |
65 | GAUTIER A, TEBO A G. Fluorogenic protein-based strategies for detection, actuation, and sensing[J]. Bioessays, 2018, 40(10): 1800118. |
[1] | 曹从军, 马含笑, 侯成敏, 丁小健, 管飙. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979. |
[2] | 杨琴, 陈宁华, 张宇杰, 叶芝祥, 杨迎春. 铈锆复合氧化物修饰电极的制备及用于水样中Pb2+的检测[J]. 应用化学, 2022, 39(6): 990-999. |
[3] | 肖海梅, 蔡蕾, 张朝晖, 陈珊, 周姝, 符金利. 磁性氧化石墨烯/MIL-101(Cr)表面金属离子印迹聚合物制备及其对Cu(Ⅱ)和Pb(Ⅱ)选择性吸附[J]. 应用化学, 2020, 37(9): 1076-1086. |
[4] | 申书昌, 彭程, 王荻. 蒙脱土表面键合配位体固相萃取填料的制备及其对重金属离子的吸附性能[J]. 应用化学, 2019, 36(6): 717-725. |
[5] | 谢丹丹, 闫亮, 尹玉立, 张朝晖, 王晶. 磁性碳纳米管表面多金属离子印迹聚合物制备及应用[J]. 应用化学, 2017, 34(4): 456-463. |
[6] | 王东升,李文涛,杨晓芳,安广宇. 高铁酸盐:一种绿色的多功能水处理剂[J]. 应用化学, 2016, 33(11): 1221-1233. |
[7] | 姚庆鑫, 谢建军, 刘军霞, 唐丽萍, 刘元. 离子强度对膨润土/木质素磺酸钠接枝丙烯酰胺-马来酸酐复合吸附树脂吸附Pb2+/Cu2+的影响[J]. 应用化学, 2015, 32(8): 940-947. |
[8] | 常艳红, 董晓宁. 多孔壳聚糖接枝聚丙烯酸/钠基蒙脱土复合高吸水凝胶的制备及其对Pb2+的吸附[J]. 应用化学, 2015, 32(6): 623-628. |
[9] | 徐思远, 雷平, 晋冠平. 三聚氰胺基螯合树脂/碳纳米管修饰充蜡石墨电极阳极溶出伏安法测定铅和镉[J]. 应用化学, 2014, 31(02): 206-211. |
[10] | 肖开提·阿布力孜, 阿布力孜·伊米提, 彭秧, 王吉德, 司马义·努尔拉. 交联聚丙烯腈螯合树脂对Pb(Ⅱ)的吸附及其在痕量分析中的应用[J]. 应用化学, 2011, 28(09): 1082-1086. |
[11] | 邱从交, 刘美玲, 李海涛. 亲水性氨基吡啶树脂的合成及其吸附性能[J]. 应用化学, 2010, 27(09): 1042-1045. |
[12] | 杨季冬, 张书然, 胡蓉, 杨琼. 导数-同步荧光法同时测定亚甲蓝和天青A 的研究[J]. 应用化学, 2009, 26(07): 811-815. |
[13] | 葛慎光, 于京华, 李波, 谭云, 程晓亮, 戴平. 巯基棉分离富集动力学荧光法测定痕量锑[J]. 应用化学, 2008, 25(9): 1110-1112. |
[14] | 唐星华, 张小敏, 周爱玲. 不同组分下三乙烯四胺交联壳聚糖对重金属离子的吸附性能[J]. 应用化学, 2008, 25(3): 350-355. |
[15] | 张丽娜, 李波, 于京华, 魏琴. 阻抑荧光光度法测定痕量锡[J]. 应用化学, 2008, 25(12): 1417-1420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||