1 |
LEZEC H J, DEGIRON A, DEVAUX E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820-822.
|
2 |
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.
|
3 |
KANKALA R K, HAN Y H, NA J, et al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles[J]. Adv Mater, 2020, 32(23): 1907035.
|
4 |
SÁNCHEZ-LÓPEZ E, GOMES D, ESTERUELAS G, et al. Metal-based nanoparticles as antimicrobial agents: an overview[J]. Nanomaterials, 2020, 10(2): 292.
|
5 |
SOMERS R C, BAWENDI M G, NOCERA D G. CdSe nanocrystal based chem-/bio-sensors[J]. Chem Soc Rev, 2007, 36 (4): 579-591.
|
6 |
XUE C, LI Q. Anisotropic nanomaterials: preparation, properties, and applications[M]//Anisotropic Nanomaterials. Springer, Cham, 2015: 69-118.
|
7 |
MITCHELL M J, BILLINGSLEY M M, HAEY R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124.
|
8 |
ASTRUC D. Introduction: nanoparticles in catalysis[J]. Chem Rev, 2020, 120(2): 461-463.
|
9 |
GURUNATHAN S, QASIM M, CHOI Y, et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?[J]. Nanomaterials, 2020, 10(9): 1645.
|
10 |
DANIEL M C, ASTRUC D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104 (1): 293-346.
|
11 |
GAO J, GU H, XU B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications[J]. Acc Chem Res, 2009, 42(8): 1097-1107.
|
12 |
MACFARLANE L R, SHAIKH H, GARCIA-HERNANDEZ J D, et al. Functional nanoparticles through π-conjugated polymer self-assembly[J]. Nat Rev Mater, 2021, 6(1): 7-26.
|
13 |
LIU J, LUO T, XUE Y, et al. Hierarchical self-assembly of discrete metal-organic cages into supramolecular nanoparticles for intracellular protein delivery[J]. Angew Chem Int Ed, 2021, 60(10): 5429-5435.
|
14 |
DU Y, JIA S, CHEN Y, et al. Type I photoinitiator-functionalized block copolymer nanoparticles prepared by RAFT-mediated polymerization-induced self-assembly[J]. ACS Macro Lett, 2021, 10(2): 297-306.
|
15 |
WANG L, URBAS A M, LI Q. Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids[J]. Adv Mater, 2020, 32(41): 1801335.
|
16 |
DHAKAL N P, JIANG J, GUO Y, et al. Self-assembly of aqueous soft matter patterned by liquid-crystal polymer networks for controlling the dynamics of bacteria[J]. ACS Appl Mater Interfaces, 2020, 12(12): 13680-13685.
|
17 |
PARK W, HA T, JUNG T S, et al. Security use of the chiral photonic film made of helical liquid crystal structures[J]. Nanoscale, 2020, 12(42): 21629-21634.
|
18 |
SEGURA-FERNÁNDEZ F G, SERRATO-GARCÍA E F, FLORES-CALDERÓN J E, et al. Dynamics of nanoparticle self-assembly by liquid crystal sorting in two dimensions[J]. Front Phys, 2021, 9: 228.
|
19 |
CHENG X H, GAO H F, TAN X P, et al. Transition between triangular and square tiling patterns in liquid crystalline honeycombs based on tetrathiophene-based bolaamphiphiles[J]. Chem Sci, 2013, 4: 3317-3331
|
20 |
NEALON G L, GREGET R, DOMINGUEZ C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures[J]. Beilstein J Org Chem, 2012, 8(1): 349-370.
|
21 |
ZHANA X, HSU C H, REN X, et al. Supramolecular fullerene liquid crystals formed by self-organized two-dimensional crystals[J]. Angew Chem Int Ed, 2015, 54 (1): 114-117.
|
22 |
TRAN L, BISHOP K J M. Swelling cholesteric liquid crystal shells to direct the assembly of particles at the interface[J]. ACS Nano, 2020, 14(5): 5459-5467.
|
23 |
PRAKASH J, KHAN S, CHAUHAN S, et al. Metal oxide-nanoparticles and liquid crystal composites: a review of recent progress[J]. J Mol Liq, 2020, 297: 112052.
|
24 |
PANDEY F P, RASTOGI A, MANOHAR R, et al. Dielectric and electro-optical properties of zinc ferrite nanoparticles dispersed nematic liquid crystal 4'-heptyl-4-biphenylcarbonnitrile[J]. Liq Cryst, 2020, 47(7): 1025-1040.
|
25 |
SINGH B P, SIKARWAR S, MISRA A K, et al. Enhanced electro-optical properties of low viscous nematic liquid crystal doped with mixed phase anatase/rutile TiO2 nanoparticles for display applications[J]. World J Appl Chem, 2021, 6(3): 25.
|
26 |
GOODBY J W, SAEZ I M, COWLING S J, et al. Transmission and amplification of information and properties in nanostructured liquid crystals[J]. Angew Chem Int Ed, 2008, 47(15): 2754-2787
|
27 |
STUDENYAK I P, KOVALCHUK O V, POGODIN A I, et al. Influence of cation substitution on dielectric properties and electric conductivity of 6CB liquid crystal with Me7GeS5I (Me=Ag, Cu) superionic nanoparticles[J]. Mol Cryst Liq Cryst, 2020, 702(1): 21-29.
|
28 |
TOMAŠOVIČOVÁ N, BATKOVA M, BATKO I, et al. Orientational self-assembly of nanoparticles in nematic droplets[J]. Nanoscale Adv, 2021, 3(10): 2777-2781.
|
29 |
KUMAR S. Discotic liquid crystal-nanoparticle hybrid systems[J]. NPG Asia Mater, 2014, 6: e82
|
30 |
CSEH L, MANG X, ZENG X, et al. Helically twisted chiral arrays of gold nanoparticles coated with a cholesterol mesogen[J]. J Am Chem Soc, 2015, 137(40): 12736-12739.
|
31 |
MAI Y, EISENBERG A. Controlled incorporation of particles into the central portion of vesicle walls[J]. J Am Chem Soc, 2010, 132(29): 10078-10084.
|