[1] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414( 6861): 345-352. [2] DAMO U M, FERRARI M L, TURAN A,et al. Solid oxide fuel cell hybrid system: a detailed review of an environmentally clean and efficient source of energy[J]. Energy, 2019, 168: 235-246. [3] CHOI S, KUCHARCZYK C J, LIANG Y, et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells[J]. Nat Energy, 2018, 3(3): 202-210. [4] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: a review[J]. Prog Mater Sci, 2015, 72: 141-337. [5] SREEDHAR I, AGARWAL B, GOYAL P, et al. Recent advances in material and performance aspects of solid oxide fuel cells[J]. J Electroanal Chem, 2019, 848: 113315. [6] HARDMAN S, CHANDAN A, STEINBERGER-WILCKENS R. Fuel cell added value for early market applications[J]. J Power Sources, 2015, 287: 297-306. [7] ZHAO L, DRENNAN J, KONG C, et al. Insight into surface segregation and chromium deposition on La0.6Sr0.4Co0.2Fe0.803-δ cathodes of solid oxide fuel cells[J]. J Mater Chem A, 2014, 2(29): 11114-11123. [8] SHAO Z, HAILE S-M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173. [9] KIM J H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: an overview and perspective[J].J Mater Chem A, 2015, 3: 24195-24210. [10] BOEHM E, BASSAT J M, STEIL M C, et al. Oxygen transport properties of La2Ni1-xCuxO4+δ mixed conducting oxides[J]. Solid State Sci, 2003, 5(7): 973-981. [11] GU X, CARNEIRO J S A, SAMIRA S, et al. Efficient oxygen electrocatalysis by nanostructured mixed-metal oxides[J]. J Am Chem Soc, 2018, 140(26): 8128-8137. [12] GAO Z, DING X, DING D,et al. Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor[J].J Am Chem Soc, 2008, 130(9): 2762-2763. [13] SUN C, LI Q, SUN L, et al. Characterization and electrochemical performances of Pr2CuO4 as a cathode material for intermediate temperature solid oxide fuel cells[J]. Mater Res Bull, 2014, 53: 65-69. [14] GOZAR A, LOGVENOV G, KOURKOUTIS L F, et al. High-temperature interface superconductivity between metallic and insulating copper oxides[J]. Nature, 2008, 455(7214): 782-785. [15] REEHUIS M, ULRICH C, PROKES K, et al. Crystal structure and high-field magnetism of La2CuO4[J]. Phys Rev B, 2006, 73: 144513. [16] VANTSPIJKER H, SIMON D, OOMS F. Photocatalytic water splitting by means of undoped and doped La2CuO4 photocathodes[J]. Int J Hydrog Energy, 2008, 33(22): 6414-6419. [17] ZHENG K, GORZKOWSKA-SOBAS' A, S'WIERCZEK K. Evaluation of Ln2CuO4 (Ln: La, Pr, Nd) oxides as cathode materials for IT-SOFCs[J]. Mater Res Bull, 2012, 47(12): 4089-4095. [18] LI Q, ZHAO H, HUO L, et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs[J]. Electrochem Commun, 2007, 9(7): 1508-1512. [19] CARONNA T, FONTANA F, SORA I N, et al.Chemical compatibility of Sr-doped La2CuO4 cathode material with LSGM[J]. Solid State Ion, 2010, 181(29/30): 1355-1358. [20] DOS SANTOS-GÓMEZ L, PORRAS-VÁZQUEZ J M, HURTADO J, et al. Stability and electrochemical performance of nanostructured La2CuO4+δ cathodes[J]. J Alloys Compd, 2019, 788: 565-572. [21] 孙丽萍, 赵辉, 王文学, 等. 静电纺丝法制备La2CuO4纳米管阴极材料及其电化学性质研究[J]. 无机化学学报, 2014, 30(4): 757-762. SUN L P, ZHAO H, WANG W X, et al. Electrochemical performance of La2CuO4 nanotube materials prepared via electrospinning method[J]. Chinese J Inorg Chem, 2014, 30(4): 757-762. [22] CHOU F C, CHO J H, MILLER L L, et al. New phases induced by hydrogen reduction and by subsequent oxidation of L2CuO4 (L=La, Pr,Nd, Sm, Eu, Gd)[J]. Phys Rev B, 1990, 42: 6172. [23] HOUCHATI M I, CERETTI M, RITTER C, et al. From T to T'-La2CuO4 via oxygen vacancy ordered La2CuO3.5[J]. Chem Mater, 2012, 24(19): 3811-3815. [24] IMAI Y, KATO M, TAKARABE Y, et al. Low-temperature synthesis of La2CuO4 with the T-structure from molten hydroxides[J]. Chem Mater, 2007, 19(15): 3584-3585. [25] TSUKADA A, KROCKENBERGER Y, NODA M, et al. New class of T'-structure cuprate superconductors[J]. Solid State Commun, 2005, 133(7): 427-431. [26] MUKHERJEE K, HAYAMIZU Y, KIM C S, et al. Praseodymium cuprate thin filmcathodes for intermediate temperature solid oxide fuel cells: roles of doping, orientation, and crystal structure[J]. ACS Appl Mater Interfaces, 2016, 8(50): 34295-34302. [27] ZHANG Z, CHEN X, ZHANG X, et al. Synthesis of Cu2O/La2CuO4 nanocomposite as an effective heterostructure photocatalyst for H2 production[J]. Catal Commun, 2013, 36: 20-24. [28] HUA B, ZHANG Y, YAN N, et al. The excellence of both worlds: developing effective double perovskite oxide catalyst of oxygen reduction reaction for room and elevated temperature applications[J]. Adv Funct Mater, 2016, 26(23): 4106-4112. [29] TAKEDA Y, KANNO R, NODA M, et al. Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia[J]. J Electrochem Soc,1987, 134(11): 2656-2661. |