[1] | Yue H J,Huang X K,Lv D P,et al. Hydrothermal Synthesis of LiMn2O4/C Composite as a Cathode for Rechargeable Lithium-Ion Battery with Excellent Rate Capability[J]. Electrochim Acta,2009,54(23):5363-5367. | [2] | Kim D K,Muralidharan P,Lee H W,et al. Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes[J]. Nano Lett,2008,8(11):3948-3952. | [3] | Hashem A M,Abdel-Ghany A E,Abuzeid H M,et al. EDTA as Chelating Agent for Sol-Gel Synthesis of Spinel LiMn2O4 Cathode Material for Lithium Batteries[J]. J Alloys Compd,2018,737:758-766. | [4] | SHU Dong,YANG Yong,XIA Xi,et al. Preparation of Spinel LiMn2O4 at Low Temperature[J]. Chinese J Appl Chem,2000,17(6):633-635(in Chinese). 舒东,杨勇,夏熙,等. 尖晶石型LiMn2O4的低温制备[J]. 应用化学,2000,17(6):633-635. | [5] | YU Bingchuan,WU Hongte,YANG Guangzhong.Synthesis and Properties of SiO2-Modified LiMn2O4 Cathode Material[J]. Chinese J Appl Chem,2006,(4):378-381(in Chinese). 于兵川,吴洪特,杨光忠. 锂离子电池LiMn2O4正极材料的高温改性[J]. 应用化学,2006,(4):378-381. | [6] | Xia H,Ragavendran K R,Xie J,et al. Ultrafine LiMn2O4/Carbon Nanotube Nanocomposite with Excellent Rate Capability and Cycling Stability for Lithium-Ion Batteries[J]. J Power Sources,2012,212:28-34. | [7] | Cheng F Y,Wang H B,Zhu Z Q,et al. Porous LiMn2O4 Nanorods with Durable High-Rate Capability for Rechargeable Li-Ion Batteries[J]. Energy Environ Sci,2011,4(9):3668-3675. | [8] | Deng Y F,Zhou Y B,Shi Z C,et al. Porous LiMn2O4 Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries[J]. J Mater Chem A,2013,1(28):8170-8177. | [9] | Cericola D,Nov k P,Wokaun A,et al. Mixed Bi-Material Electrodes Based on LiMn2O4 and Activated Carbon for Hybrid Electrochemical Energy Storage Devices[J]. Electrochim Acta,2011,56(24):8403-8411. | [10] | Sun X Z,Zhang X,Huang B,et al. (LiNi0.5Co0.2Mn0.3O2+AC)/Graphite Hybrid Energy Storage Device with High Specific Energy and High Rate Capability[J]. J Power Sources,2013,243:361-368. | [11] | Kishore B,Shanmughasundaram D,Penki T R,et al. Coconut Kernel-Derived Activated Carbon as Electrode Material for Electrical Double-Layer Capacitors[J]. J Appl Electrochem,2014,44(8):903-916. | [12] | Liu D C,Zhang W L,Lin H B,et al. Hierarchical Porous Carbon Based on the Self-Templating Structure of Rice Husk for High-performance Supercapacitors[J]. RSC Adv,2015,5(25):19294-19300. | [13] | Xing A,Tian S,Tang H,et al. Mesoporous Silicon Engineered by the Reduction of Biosilica from Rice Husk as a High-Performance Anode for Lithium-Ion Batteries[J]. RSC Adv,2013,3(26):10145-10149. | [14] | YU Junfeng,CHEN Peirong,YU Zhimin,et al. Preparation and Characteristic of Activated Carbon from Sawdust Bio-Char by Chemical Activation with KOH[J]. Chinese J Appl Chem,2013,30(9):1017-1022(in Chinese). 余峻峰,陈培荣,俞志敏,等. KOH活化木屑生物炭制备活性炭及其表征[J]. 应用化学,2013,30(9):1017-1022. | [15] | Zhang W,Lin H,Lin Z,et al. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin Through a Facile Template-Free Method[J]. ChemSusChem,2015,8(12):2114-2122. | [16] | Qian M L,Huang J J,Han S C,et al. Preparation and Electrochemical Performance of the Interconnected LiMn2O4 Fibers[J]. Electrochim Acta,2014,120:16-22. | [17] | Lee S,Cho Y,Song H K,et al. Carbon-Coated Single-Crystal LiMn2O4 Nanoparticle Clusters as Cathode Material for High-Energy and High-Power Lithium-Ion Batteries[J]. Angew Chem Int Ed,2012,51(35):8748-8752. | [18] | Zhang W L,Yin J,Lin Z,et al. Facile Preparation of 3D Hierarchical Porous Carbon from Lignin for the Anode Material in Lithium Ion Battery with High Rate Performance[J]. Electrochim Acta,2015,176:1136-1142. |
|