[1] Johnson J A,Turro N J,Koberstein J T, et al . Some Hydrogels Having Novel Molecular Structures[J]. Prog Polym Sci ,2010,35(3):332-337. [2] Ruel-Gariépy E,Leroux J C. In Situ -forming Hydrogels-Review of Temperature-sensitive Systems[J]. Eur J Pharm Biopharm ,2004,58(2):409-426. [3] Lee K Y,Mooney D J. Hydrogels for Tissue Engineering[J]. Chem Rev ,2001,101(7):1869-1880. [4] Van Tomme S R,Storm G,Hennink W E. In Situ Gelling Hydrogels for Pharmaceutical and Biomedical Applications[J]. Int J Pharm ,2008,355(1/2):1-18. [5] Calvert P. Hydrogels for Soft Machines[J]. Adv Mater ,2009,21(7):743-756. [6] Nagase K,Kobayashi J,Okano T. Temperature-responsive Intelligent Interfaces for Biomolecular Separation and Cell Sheet Engineering[J]. J R Soc Interface ,2009,6(Suppl 3):S293-S309. [7] Ogawa Y,Ogawa K,Kokufuta E. Swelling-shrinking Behavior of a Polyampholyte Gel Composed of Positively Charged Networks with Immobilized Polyanions[J]. Langmuir ,2004,20(7):2546-2552. [8] Xu K,Wang J,Xiang S, et al . Polyampholytes Superabsorbent Nanocomposites with Excellent Gel Strength[J]. Compos Sci Technol ,2007,67(15/16):3480-3486. [9] XU Kun,CHEN Qiang,XIANG Sheng, et al . Structure and Characteristics of Polyampholyte Super-absorbent Nanocomposite[J]. Chem J Chinese Univ ,2006,67(12):2417-2421(in Chinese). 徐昆,陈强,项盛,等. 两性纳米复合高吸水性树脂的结构与性能[J]. 高等学校化学学报,2006,67(12):2417-2421. [10] Armentrout R S,McCormick C L,Water Soluble Polymers.76.Electrolyte Responsive Cyclocopolymers with Sulfobetaine Units Exhibiting Polyelectrolyte or Polyampholyte Behavior in Aqueous Media[J]. Macromolecules ,2000,33(2):419-424. [11] Skouri M,Munch J P,Candau S J, et al . Conformation of Neutral Polyampholyte Chains in Salt-solutions-A Light-Scattering Study[J]. Macromolecules ,1994,27(1):69-76. [12] Thevenot C,Khoukh A,Reynaud S, et al . Kinetic Aspects,Rheological Properties and Mechanoelectrical Effects of Hydrogels Composed of Polyacrylamide and Polystyrene Nanoparticles[J]. Soft Matter ,2007,3(4):437-447. [13] Chen Q,Xu K,Zhang W D, et al . Preparation and Characterization of Poly( N -isopropylacrylamide)/Polyvinylamine Core-shell Microgels[J]. Colloid Polym Sci ,2009,287(11):1339-1346. [14] Lynch I,Dawson K A. Synthesis and Characterization of an Extremely Versatile Structural Motif Called the “Plum-pudding” Gel[J]. J Phys Chem B ,2003,107(36):9629-9637. [15] Salvati A,Soderman O,Lynch I. Plum-pudding Gels as a Platform for Drug Delivery: Understanding the Effects of the Different Components on the Diffusion Behavior of Solutes[J]. J Phys Chem B ,2007,111(25):7367-7376. [16] Hu J,Kurokawa T,Nakajima T, et al . High Fracture Efficiency and Stress Concentration Phenomenon for Microgel-Reinforced Hydrogels Based on Double-Network Principle[J]. Macromolecules ,2012,45(23):9445-9451. [17] Zhang X Z,Chu C C. Fabrication and Characterization of Microgel-impregnated, Thermosensitive PNIPAAm Hydrogels[J]. Polymer ,2005,46(23):9664-9673. [18] Zhang J T,Huang S W,Xue Y N, et al . Poly( N -isopropylacrylamide) Nanoparticle-incorporated PNIPAAm Hydrogels with Fast Shrinking Kinetics[J]. Macromol Rapid Comm ,2005,26(16):1346-1350. |