
应用化学 ›› 2024, Vol. 41 ›› Issue (9): 1284-1296.DOI: 10.19894/j.issn.1000-0518.240033
收稿日期:
2024-01-31
接受日期:
2024-05-20
出版日期:
2024-09-01
发布日期:
2024-10-09
通讯作者:
施冬健
基金资助:
Tian-He GAO, Li-Juan YAN, Ming-Qing CHEN, Wei-Fu DONG, Dong-Jian SHI()
Received:
2024-01-31
Accepted:
2024-05-20
Published:
2024-09-01
Online:
2024-10-09
Contact:
Dong-Jian SHI
About author:
djshi@jiangnan.edu.cnSupported by:
摘要:
使用抗菌包装材料是延缓水果腐烂变质的有效方法,从而可以最大限度地减少经济损失和健康危害。天然抗菌剂尤其是精油因其优异的抗菌性能,常被选为抗菌包装材料中的抗菌组分,但因其低水溶性、较差的稳定性和易挥发等因素导致所制得的材料机械性能较差且抗菌有效时间较短。因此,以壳聚糖(CS)与高相对分子质量羧甲基葡聚糖(HCMG)自组装形成的纳米颗粒为皮克林乳液(PE)的稳定剂,制备负载柠檬醛的皮克林乳液; 再以CS、羧甲基葡聚糖(CMG)、聚乙烯醇(PVA)和PE为原料,通过溶剂流延法制备了复合膜。所制备的含负载柠檬醛的PE的抗菌复合膜(CS-CMG-PVA-PE1)的紫外-可见光透过率可达84%,拉伸强度达到32 MPa,断裂伸长率为130%,CO2/O2的透过率比为8。PE对柠檬醛起到了保护作用,不仅提高了柠檬醛在复合膜基材中的相容性,同时延长了包装材料的抗菌时间。更重要的是,复合膜共混液无细胞毒性,可以直接通过浸涂的方式在水果表面形成保护层,以提高水果的保质期,大大扩大了其易用性和使用范围。
中图分类号:
高添贺, 颜丽娟, 陈明清, 东为富, 施冬健. 高负载柠檬醛抗菌复合膜的制备与性能[J]. 应用化学, 2024, 41(9): 1284-1296.
Tian-He GAO, Li-Juan YAN, Ming-Qing CHEN, Wei-Fu DONG, Dong-Jian SHI. Preparation and Properties of Antibacterial Composite Films with High Loading of Citral[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1284-1296.
图1 (A) Dex和HCMG的FT-IR谱图、(B) HCMG的GPC曲线和(C) CS与不同相对分子质量CMG的自组装展示图
Fig.1 (A) FT-IR spectra of Dex and HCMG, (B) GPC curve of HCMG and (C) display diagrams of self-assembly between CS and CMGs with different molecular mass
图2 CS与HCMG自组装纳米颗粒的构建机理和皮克林乳液的形成机制示意图
Fig.2 Schematic illustration of the construction mechanism of CS and HCMG self-assembled nanoparticles and the formation diagram of Pickering emulsion
Sample | m(CS)∶m(HCMG) | Average particle size/nm | PDI |
---|---|---|---|
1 | 20∶1 | 981.2±15.23 a | 0.334±0.047 b |
2 | 10∶1 | 493.5±12.25 b | 0.325±0.063 b |
3 | 5∶1 | 480.5±11.32 b | 0.286±0.054 b |
4 | 2∶1 | 421.1±9.56 c | 0.295±0.046 b |
5 | 1∶1 | 376.8±8.71 d | 0.104±0.032 d |
6 | 1∶2 | 333.3±8.35 e | 0.546±0.081 a |
表1 不同质量比的CS与HCMG自组装纳米颗粒的粒径与分布
Table 1 Particle size and distribution of CS and HCMG self-assembled nanoparticles with different mass ratios
Sample | m(CS)∶m(HCMG) | Average particle size/nm | PDI |
---|---|---|---|
1 | 20∶1 | 981.2±15.23 a | 0.334±0.047 b |
2 | 10∶1 | 493.5±12.25 b | 0.325±0.063 b |
3 | 5∶1 | 480.5±11.32 b | 0.286±0.054 b |
4 | 2∶1 | 421.1±9.56 c | 0.295±0.046 b |
5 | 1∶1 | 376.8±8.71 d | 0.104±0.032 d |
6 | 1∶2 | 333.3±8.35 e | 0.546±0.081 a |
图4 不同质量比的CS与HCMG形成的自组装纳米颗粒包载柠檬醛的皮克乳液超景深显微镜图
Fig.4 Superdepth microscope images of Pickering emulsion for encapsulated citral by self-assembled CS and HCMG nanoparticles with different mass ratios
m(CS)∶m(HCMG) | Average particle size/μm | PDI | Loading efficiency/% | |
---|---|---|---|---|
20∶1 | 2.878±0.205 a | 0.778±0.089 a | 10.5 | |
10∶1 | 2.547±0.178 b | 0.635±0.025 b | 13.5 | |
5∶1 | 1.945±0.123 c | 0.574±0.065 c | 18.5 | |
2∶1 | 2.0001±0.157 c | 0.612±0.086 c | 65.1 | |
1∶1 | 2.05±0.167 c | 0.624±0.035 c | 22.1 | |
1∶2 | - d | - d | 6.5 |
表2 不同质量比的CS与HCMG形成的自组装纳米颗粒柠檬醛负载率以及乳液的尺寸和分布
Table 2 Loading efficiency of citral by self-assembled CS and HCMG nanoparticles with different mass ratios and size and distribution of Pickering emulsion
m(CS)∶m(HCMG) | Average particle size/μm | PDI | Loading efficiency/% | |
---|---|---|---|---|
20∶1 | 2.878±0.205 a | 0.778±0.089 a | 10.5 | |
10∶1 | 2.547±0.178 b | 0.635±0.025 b | 13.5 | |
5∶1 | 1.945±0.123 c | 0.574±0.065 c | 18.5 | |
2∶1 | 2.0001±0.157 c | 0.612±0.086 c | 65.1 | |
1∶1 | 2.05±0.167 c | 0.624±0.035 c | 22.1 | |
1∶2 | - d | - d | 6.5 |
图5 CS-CMG-PVA、CS-CMG-PVA-PE1、CS-CMG-PVA-PE2和CS-CMG-PVA-PE3复合膜的(A-D)数码照片、(A′-D′)膜表面的SEM图和(A″-D″)膜截面的SEM图
Fig.5 (A-D) Digital photographs, (A′-D′) surface SEM images, and (A″-D″) cross-sectional SEM images of the CS-CMG-PVA, CS-CMG-PVA-PE1, CS-CMG-PVA-PE2, and CS-CMG-PVA-PE3 composite films (all the films are 90 mm in diameter)
图6 CS-CMG-PVA、CS-CMG-PVA-PE1、CS-CMG-PVA-PE2和CS-CMG-PVA-PE3复合膜的(A) FT-IR谱图、(B) FT-IR谱图局部放大图、(C) XRD衍射图和(D)紫外-可见光区的透射率
Fig.6 (A) FT-IR spectra, (B) enlarged image of ATR-FTIR spectra, (C) XRD patterns and (D) UV-Vis transmittance of all the prepared composite films
图7 CS-CMG-PVA、CS-CMG-PVA-PE1、CS-CMG-PVA-PE2和CS-CMG-PVA-PE3复合膜的(A)拉伸图、(B)弹性模量和断裂韧性图和(C) TGA图
Fig.7 (A) Stretch curves, (B) elastic modulus and fracture toughness and (C) TGA analysis of all prepared composite films
图8 柠檬醛在复合膜中的释放曲线(Free Citral曲线为柠檬醛在CS-CMG-PVA-Free复合膜中的释放曲线; Citral of PE1曲线为柠檬醛在CS-CMG-PVA-PE1复合膜中的释放曲线)
Fig.8 Citral release profile of films (Free Citral curve is the release of citral in the CS-CMG-PVA-Free composite film; Citral of PE curve represents the release of citral in CS-CMG-PVA-PE1 composite film)
图9 与不同复合膜共培育后的(A) 细菌生长照片、(B) 细菌相对活性、与CS-CMG-PVA-PE1复合膜共培育不同时间后的(C) 细菌生长照片和(D) 细菌相对活性(P<0.01)
Fig.9 (A) Photos of bacterial growth, (B) bacterial relative viability after coculturing with different composite films, (C) photos of bacterial growth and (D) bacterial relative viability after coculturing with CS-CMG-PVA-PE1 composite films for different times (P<0.01)
图10 (A) 涂有不同涂层的草莓生长状态、(B)质量损失和(C)硬度变化
Fig.10 (A) Growth status of strawberries coated with different coatings, (B) mass loss and (C) changes in firmness
1 | NIAN L, WANG M, SUN X, et al. Biodegradable active packaging: components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables[J]. Crit Rev Food Sci Nutr, 2022, 64(8): 2304-2339. |
2 | CHANG H, XU J, MACQUEEN L A, et al. High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model[J]. Nat Food, 2022, 3(6): 428-436. |
3 | ANAND S, BARUA M K. Modeling the key factors leading to post-harvest loss and waste of fruits and vegetables in the agri-fresh produce supply chain[J]. Comput Electron Agr, 2022, 198: 106936. |
4 | BATZ M, HOFFMANN S, MORRIS J G. Disease-outcome trees, EQ-5D scores, and estimated annual losses of quality-adjusted life years (QALYs) for 14 foodborne pathogens in the united states[J]. Foodborne Pathog Dis, 2014, 11(5): 395-402. |
5 | DUAN N, LI Q, MENG X, et al. Preparation and characterization of k-carrageenan/konjac glucomannan/TiO2 nanocomposite film with efficient anti-fungal activity and its application in strawberry preservation[J]. Food Chem, 2021, 364: 130441. |
6 | BAGHI F, GHARSALLAOUI A, DUMAS E, et al. Advancements in biodegradable active films for food packaging: effects of nano/microcapsule incorporation[J]. Foods, 2022, 11(5): 760. |
7 | ABDUL KHALIL H P S, BANERJEE A, SAURABH C K, et al. Biodegradable films for fruits and vegetables packaging application: preparation and properties[J]. Food Eng Rev, 2018, 10(3): 139-153. |
8 | SHARABY M R, SOLIMAN E A, ABDEL-RAHMAN A B, et al. Novel pectin-based nanocomposite film for active food packaging applications[J]. Sci Rep, 2022, 12(1): 20673. |
9 | 柴三中, 赵亚珠. 食品包装用抗菌膜研究进展[J]. 包装工程, 2022, 43(15): 178-185. |
CHAI S Z, ZHAO Y Z. Research progress of antimicrobial films for food packaging[J]. Packag Eng, 2022, 43(15): 178-185. | |
10 | YANG Z, GUAN C, ZHOU C, et al. Amphiphilic chitosan/carboxymethyl gellan gum composite films enriched with mustard essential oil for mango preservation[J]. Carbohyd Polym, 2023, 300: 120290. |
11 | 颜丽娟, 高添贺, 施冬健, 等. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
YAN L J,GAO T H,SHI D J, et al. Preparation and properties of eugenol/modified polyvinyl alcohol antibacterial composite films[J]. Chin J Appl Chem, 2023, 40(4): 527-535. | |
12 | FU J, ZHU Y, CHENG F, et al. A composite chitosan derivative nanoparticle to stabilize a W1/O/W2 emulsion: preparation and characterization[J]. Carbohyd Polym, 2021, 256: 117533. |
13 | NOSHIRVANI N, GHANBARZADEH B, GARDRAT C, et al. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films[J]. Food Hydrocolloids, 2017, 70: 36-45. |
14 | MOUZAHIM M E, EDDARAI E M, ELADAOUI S, et al. Effect of kaolin clay and ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation[J]. Food Chem, 2023, 410: 135470. |
15 | LIU J, SONG F, CHEN R, et al. Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films[J]. Carbohyd Polym, 2022, 275: 118704. |
16 | ZHANG Y, DAI J, MA X, et al. Nano-emulsification essential oil of Monarda didyma L. to improve its preservation effect on postharvest blueberry[J]. Food Chem, 2023, 417: 135880. |
17 | CORTESI R, ESPOSITO E, OSTI M, et al. Dextran cross-linked gelatin microspheres as a drug delivery system[J]. Eur J Pharm Biopharm, 1999, 47(2): 153-160. |
18 | FAZELI M, FAZELI F, NUGE T, et al. Study on the preparation and properties of polyamide/chitosan nanocomposite fabricated by electrospinning method[J]. J Polym Environ, 2022, 30(2): 644-652. |
19 | KAWASAKI T, NAKAJI-HIRABAYASHI T, MASUYAMA K, et al. Complex film of chitosan and carboxymethyl cellulose nanofibers[J]. Colloids Surf B, 2016, 139: 95-99. |
20 | FANG X, QING Y, LOU Y, et al. Degradable, recyclable, water-resistant, and eco-friendly poly(vinyl alcohol)-based supramolecular plastics[J]. ACS Mater Lett, 2022, 4(6): 1132-1138. |
21 | 卢亚男, 赵美艳, 李立. 聚乙烯抗菌膜的制备及其对草莓保鲜效果的研究[J]. 包装工程, 2023, 44(1): 195-202. |
LU Y N, ZHAO M Y, LI L. Preparation of antibacterial polyethylene films and their effect on strawberry preservation[J]. Packag Eng, 2023, 44(1): 195-202. | |
22 | WOO J H, KIM N H, KIM S I, et al. Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite[J]. Composites Part B, 2020, 199: 108205. |
23 | LIU W, KANG S, ZHANG Q, et al. Self-assembly fabrication of chitosan-tannic acid/MXene composite film with excellent antibacterial and antioxidant properties for fruit preservation[J]. Food Chem, 2023, 410: 135405. |
24 | CHENG S, SU R, SONG L, et al. Citral and trans-cinnamaldehyde, two plant-derived antimicrobial agents can induce Staphylococcus aureus into VBNC state with different characteristics[J]. Food Microbiol, 2023, 112: 104241. |
25 | 龚炎杰. 酵母β-1,3-D-葡聚糖的制备及其羧甲基衍生化的研究[D].广州:华南理工大学, 2006. |
GONG Y J. β-1,3-D-Glucan from the yeast and its carboxymethylation cerivatization[D]. Guangzhou:South China University Technology, 2006. | |
26 | 郭少波, 梁艳莉, 刘智峰, 等. 四环素-Ag复合材料的协同抑菌性能[J]. 应用化学, 2021, 38(11): 1462-1468. |
GUO S B, LIANG Y L, LIU Z F, et al. Synergistic antibacterial activity of tetracycline combined with silver nanoparticles[J]. Chin J Appl Chem, 2021, 38(11): 1462-1468. | |
27 | WU X, ZHANG Q, WANG Z, et al. Investigation of construction and characterization of carboxymethyl chitosan-sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing[J]. Int J Biol Macromol, 2022, 209: 1837-1847. |
28 | ZHU X, CHEN J, HU Y, et al. Tuning complexation of carboxymethyl cellulose/cationic chitosan to stabilize Pickering emulsion for curcumin encapsulation[J]. Food Hydrocolloids, 2021, 110: 106135. |
29 | GAO T, YAN L, YU Q, et al. High transparency, water vapor barrier and antibacterial properties of chitosan/carboxymethyl glucan/poly(vinyl alcohol)/nanoparticles encapsulating citral composite film for fruit packaging[J]. Int J Biol Macromo, 2024, 261: 129755. |
30 | OKUYAMA K, NOGUCHI K, MIYAZAWA T, et al. Molecular and crystal structure of hydrated chitosan[J]. Macromolecules, 1997, 30(19): 5849-5855. |
31 | YU N, SHAO S, HUAN W, et al. Preparation of novel self-assembled albumin nanoparticles from camellia seed cake waste for lutein delivery[J]. Food Chem, 2022, 389: 133032. |
[1] | 刘嘉辉, 安佰超, 闫秋艳, 栾世方. 贻贝启发的抗菌骨粘合剂的制备与性能[J]. 应用化学, 2023, 40(9): 1258-1266. |
[2] | 颜丽娟, 高添贺, 施冬健, 陈明清. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
[3] | 马欲杰, 张赢心, 戴桓琰, 徐志民, 韩冰. 3D打印nHA/PEEK-AgNPs复合多孔支架的制备与性能[J]. 应用化学, 2023, 40(4): 536-545. |
[4] | 陈玉竹, 刘思思, 张蒙蒙, 林祥德, 曾冬冬. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
[5] | 林秋棚, 章朱迎, 施冬健, 裴泽军, 陈明清, 倪忠斌. 缓释型壳聚糖/醋酸氯己定复合微球的制备与性能[J]. 应用化学, 2021, 38(12): 1599-1611. |
[6] | 赵鑫钰, 陈迅, 陆梓仪, 陈雷光, 朱贤锋, 侯琳熙. Ag(Ⅲ)-聚六亚甲基双胍配合物的合成及抗菌性能表征[J]. 应用化学, 2017, 34(7): 749-756. |
[7] | 吴之传, 张宇东, 陈培根, 周凯, 陶庭先. PVA-Fe(Ⅲ)、Zn(Ⅱ)、Cd(Ⅱ)、Hg(Ⅱ)配合物的合成、表征及抗菌性能[J]. 应用化学, 2008, 25(6): 669-672. |
[8] | 方海林, 袁淑军. 一种金属络合性表面活性剂及其cu(ⅱ)配合物的合成和抗菌性[J]. 应用化学, 2007, 24(2): 178-182. |
[9] | 王蕊欣, 郭建峰, 高保娇. 高分子吡啶季铵盐的抗菌性能及机理的探讨[J]. 应用化学, 2006, 23(2): 184-187. |
[10] | 朱燕云, 陈希慧, 黄初升, 刘红星, 凌新龙. 2种苯并吡喃类查尔酮天然产物的全合成[J]. 应用化学, 2005, 22(5): 560-562. |
[11] | 刘天麟, 谢文权, 李正名. 柠檬醛的非均相催化氢化——二氢香茅醛的制备[J]. 应用化学, 1993, 0(2): 107-108. |
[12] | 林静, 黄海水. 假性紫罗酮的合成[J]. 应用化学, 1992, 0(4): 81-82. |
[13] | 李增民, 胡秉方. 2-氨基-1,3,4-噻二唑的抗水稻白叶枯病机制的探讨[J]. 应用化学, 1988, 0(4): 54-57. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 174
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||