1 |
MOORE G E. Cramming more components onto integrated circuits[J]. Proc IEEE, 1998, 86(1): 82-85.
|
2 |
WEI W, LIU J C, LI H, et al. Development and application of microelectronic photoresist[J]. Prog Chem, 2014, 26(11): 1867-1888.
|
3 |
顾雪松, 李小欧, 刘亚栋, 等. g-线/i-线光刻胶研究进展[J]. 应用化学, 2021, 38(9): 1091-1104.
|
|
GU X S, LI X O, LIU Y D, et al. Research progress on g-line and i-line photoresists[J]. Chin J Appl Chem, 2021, 38(9): 1091-1104.
|
4 |
陆新宇, 马彬泽, 罗皓, 等. 二氧化碳基聚碳酸环己撑酯电子束光刻胶显影工艺优化[J]. 应用化学, 2021, 38(9): 1189-1198.
|
|
LU X Y, MA B Z, LUO H, et al. Optimization of development process for carbon dioxide-based poly(cyclohexene carbonate) electron beam resist[J]. Chin J Appl Chem, 2021, 38(9): 1189-1198.
|
5 |
HANABATA M, OI F, FURUTA A. Novolak design concept for high performance positive photoresists[J]. Polym Eng Sci, 1992, 32(20): 1494-1499.
|
6 |
ITO H, SOORIYAKUMARAN R. Recent progress in chemical amplification resists for excimer laser lithography: reverse polarity change via pinacol rearrangement[J]. Photopolym Sci Technol, 1991, 4(3): 319-335.
|
7 |
SHIRAI M, TSUNOOKA M. Photoacid and photobase generators: chemistry and applications to polymeric materials[J]. Prog Polym Sci, 1996, 21(1): 1-45.
|
8 |
SMETS G, AERTS A, ERUM J V. Photochemical initiation of cationic polymerization and its kinetics[J]. Polym J, 1980, 12(9): 539-547.
|
9 |
CRIVELLO J V, LEE J L. Alkoxy-substituted diaryliodonium salt cationic photoinitiators[J]. J Polym Sci, Part A: Polym Chem, 1989, 27(12): 3951-3968.
|
10 |
CRIVELLO J V, LAM J H W. Diaryliodonium salts. a new class of photoinitiators for cationic polymerization[J]. Macromolecules, 1977, 10(6): 1307-1315.
|
11 |
CRIVELLO J V, LAM J H W. Complex triarylsulfonium salt photoinitiators. I. the identification, characterization, and syntheses of a new class of triarylsulfonium salt photoinitiators[J]. J Polym Sci Polym Chem Ed, 1980, 18(8): 2677-2695.
|
12 |
SAEVA F D, MORGAN B P, LUSS H R. Photochemical conversion of sulfonium salts to sulfides via a 1,3-sigmatropic rearrangement. Photogeneration of broensted acids[J]. J Org Chem, 1985, 50(22): 4360-4362.
|
13 |
CRIVELLO J V, LEE J L. Photosensitized cationic polymerizations using dialkylphenacylsulfonium and dialkyl(4-hydroxyphenyl)sulfonium salt photoinitiators[J]. Macromolecules, 1981, 14(5): 1141-1147.
|
14 |
ABU-ABDOUN I I, AALE A. Cationic photopolymerization of p-methylstyrene initiated by phosphonium and arsonium salts[J]. Eur Polym J, 1993, 29(11): 1439-1443.
|
15 |
NECKERS D C, ABU-ABDOUN I I. p,p'-Bis((triphenylphosphonio)methyl)benzophenone salts as photoinitiators of free radical and cationic polymerization[J]. Macromolecules, 1984, 17(12): 2468-2473.
|
16 |
KOMOTO K, ISHIDOYA M, OGAWA H, et al. Photopolymerization of vinyl ether by hydroxy- and methylthio-alkylphosphonium salts as novel photocationic initiators[J]. Polymer, 1994, 35(1): 217-218.
|
17 |
YAMATO H, ASAKURA T, HINTERMANN T, et al. Novel nonionic photoacid generator releasing strong acid for chemically amplified resists[C]//Advances in Resist Technology and Processing XXI. SPIE, 2004, 5376: 103-114.
|
18 |
ASAKURA T, YAMATO H, MATSUMOTO A, et al. A novel photoacid generator for chemically amplified resists with ArF exposure[C]//Advances in Resist Technology and Processing XX. SPIE, 2003, 5039: 1155-1163.
|
19 |
SCHWARTZKOPF G, NIAZY N, DAS S, et al. Onium salt structure/property relationships in poly(4-tert-butyloxycarbonyloxystyrene) deep-UV resists[C]//Advances in Resist Technology and Processing VIII. SPIE, 1991, 1466: 26-38.
|
20 |
ASAKURA T, YAMATO H, MATSUMOTO A, et al. Novel photoacid generators for chemically amplified resists[J]. J Photopolym Sci Technol, 2003, 16(3): 335-345.
|
21 |
OIZUMI H, TANAKA Y, KUMISE T, et al. Patterning capability of new molecular resist in EUV lithography[J]. Microelectron Eng, 2007, 84(5): 1049-1053.
|
22 |
OIZUMI H, KUMASAKA F, TANAKA Y, et al. Performance of molecular resist based on polyphenol in EUV lithography[J]. Microelectron Eng, 2006, 83(4): 1107-1110.
|
23 |
CHINI S F, AMIRFAZLI A. Understanding pattern collapse in photolithography process due to capillary forces[J]. Langmuir, 2010, 26(16): 13707-13714.
|
24 |
HU S, CHEN J, YU T, et al. A novel dual-tone molecular glass resist based on adamantane derivatives for electron beam lithography[J]. J Mater Chem C, 2022, 10(26): 9858-9866.
|
25 |
CAO H Z, ZHENG M L, DONG X Z, et al. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing[J]. Appl Phys Lett, 2013, 102(20): 201108.
|
26 |
JIN F, LIU J, ZHAO Y Y, et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nat Commun, 2022, 13(1): 1357.
|
27 |
JI J X, XU P F, LIN Z W, et al. Application of the metal reflector for redistributing the focusing intensity of SPPs[J]. Nanomaterials, 2020, 10(5): 937.
|
28 |
YAMAGUCHI T, YAMADA T, TERAO A, et al. Fabrication of hp 32 nm resist patterns using near-field lithography[J]. Microelectron Eng, 2007, 84(5): 690-693.
|
29 |
FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.
|
30 |
LUO X, ISHIHARA T. Surface plasmon resonant interference nanolithography technique[J]. Appl Phys Lett, 2004, 84(23): 4780-4782.
|
31 |
CHEN J, HAO Q, WANG S, et al. Molecular glass resists based on 9,9′-spirobifluorene derivatives: pendant effect and comprehensive evaluation in extreme ultraviolet lithography[J]. ACS Appl Polym Mater, 2019, 1(3): 526-534.
|
32 |
YAO J H, CHI C, WU J, et al. Bisanthracene bis(dicarboxylic imide)s as soluble and stable NIR dyes[J]. Chem Eur J, 2009, 15(37): 9299-9302.
|
33 |
IWASHIMA C, IMAI G, OKAMURA H, et al. Synthesis of i- and g-line sensitive photoacid generators and their application to photopolymer systems[J]. J Photopolym Sci Technol, 2003, 16(1): 91-96.
|