应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1436-1444.DOI: 10.19894/j.issn.1000-0518.240071

• 研究论文 • 上一篇    下一篇

高残炭热固性聚芳醚酮的制备与表征

孔令曜1,2, 赵继永2(), 曲敏杰1(), 王红华2   

  1. 1.大连工业大学纺织与材料工程学院,大连 116034
    2.中国科学院大连化学物理研究所 能源材料部,大连 116023
  • 收稿日期:2024-03-06 接受日期:2024-09-13 出版日期:2024-10-01 发布日期:2024-10-29
  • 通讯作者: 赵继永,曲敏杰

Preparation and Characterization of Thermosetting Poly(aryl ether ketone) with High Carbonization Rate

Ling-Yao KONG1,2, Ji-Yong ZHAO2(), Min-Jie QU1(), Hong-Hua WANG2   

  1. 1.School of Textile and Material Engineering,Dalian Polytechnic University,Dalian 116034,China
    2.Dalian Institute of Chemical Physics of the Chinese Academy of Sciences,Division of Energy Materials,Dalian 116023,China
  • Received:2024-03-06 Accepted:2024-09-13 Published:2024-10-01 Online:2024-10-29
  • Contact: Ji-Yong ZHAO,Min-Jie QU
  • About author:minjiequ2005@126.com

摘要:

以高性能耐烧蚀高分子材料为目标,首先合成了含氨基双酚单体,再与2,7-二羟基-9-芴酮(BHF)和4,4'-二氟二苯甲酮(DFK)进行SN2亲核缩聚,得到了新型含侧氨基可交联聚芳醚酮,进一步通过高温自交联制备了高性能热固性树脂(PEK-BAD-G)。 通过热重分析(TGA)、差示扫描量热仪(DSC)、动态热机械分析仪(DMA)和氧乙炔烧蚀仪研究了材料的热稳定性、热机械性能和烧蚀性能。 通过调节共聚单体比例对聚合物性能进行调控,发现BHF的加入能够提高热固树脂的综合性能,但当BHF含量(质量分数)高于50%时,会在反应中析出,无法获得高相对分子质量的聚合物。 结果表明,当BHF含量为50%时,热固性聚芳醚酮的耐烧蚀性能、热氧化稳定性和高温机械性能达到最佳。 在氮气环境下,热分解温度达到548 ℃,600和800 ℃的残炭率分别高达87.5%和77.7%。 即使在空气气氛下,600 ℃残炭率也高达到85.4%。 同时DMA结果表明,在400 ℃时储存模量仍保持在1.9 GPa以上,这表明该材料具有出色的热机械性能。 这项研究为烧蚀树脂基体提供了新的选择,也拓宽了聚芳醚酮材料的应用范围。

关键词: 高残炭, 聚芳醚酮, 热固树脂, 耐烧蚀

Abstract:

With the goal of developing high-performance ablative polymer materials, the first step was to synthesize amino-containing bisphenol monomers. The amino-containing bisphenol monomers were then subjected to SN2 nucleophilic condensation with 2,7-dihydroxy-9-fluorenone (BHF) and 4,4'-difluorobenzophenone, resulting in a novel side amino-containing crosslinkable poly(aryl ether ketone). Further, high-performance thermosetting poly(aryl ether ketone) resin (PEK-BAD-G) was prepared through high-temperature self-crosslinking using thermal crosslinking. The thermal stability, thermal mechanical properties, and ablative performance of the material were investigated through the use of thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and an oxygen-acetylene ablation tester. The polymer properties were regulated by adjusting the copolymer monomer ratio. It was observed that the addition of BHF could enhance the overall performance of the thermosetting resin. However, when the content of BHF exceeded 50%, it precipitated during the reaction, making it challenging to obtain high relative molecular mass polymers. The results indicate that when the BHF content is 50%, the ablative resistance, thermal oxidation stability, and high-temperature mechanical properties of the thermosetting poly(aryl ether ketone) reach their optimum levels. In the nitrogen environment, the thermal decomposition temperation reached 548 ℃, the char yield were as high as 87.5% and 77.7% at 600 ℃ and 800 ℃, respectively. In addition, even under air environment, the char yield was still 85.4% even at 600 ℃. The DMA results showed that the storage modulus remained above 1.9 GPa at 400 ℃, indicating the outstanding thermomechanical properties. This study offers a new choice for ablative resin matrices. It expands the application range of poly(aryl ether ketone) materials.

Key words: High carbon residue, Poly(aryl ether ketone), Thermosetting resin, Ablation resistance

中图分类号: