
应用化学 ›› 2024, Vol. 41 ›› Issue (1): 60-86.DOI: 10.19894/j.issn.1000-0518.230286
收稿日期:
2023-09-21
接受日期:
2023-12-15
出版日期:
2024-01-01
发布日期:
2024-01-30
通讯作者:
赵博霖,张玉微
基金资助:
Jian-Tian LU, Jin-Hui ZOU, Bo-Lin ZHAO(), Yu-Wei ZHANG(
)
Received:
2023-09-21
Accepted:
2023-12-15
Published:
2024-01-01
Online:
2024-01-30
Contact:
Bo-Lin ZHAO,Yu-Wei ZHANG
About author:
zhaobolin@gzhu.edu.cnSupported by:
摘要:
天然酶是一种存在于生物体内的蛋白质催化剂,具有催化活性高、选择性强和反应条件温和等特点,对促进生物体内的各种生物化学反应起着重要作用。 此外,天然酶还可以作为催化剂、传感器和药物等的传递载体,在能源储存、环境监测、疾病治疗、食品加工和生物制药等领域具有重要的应用价值。 然而作为一种蛋白质,其本身存在的稳定性差、制备流程复杂、提纯成本高和回收困难等缺陷,大大限制了天然酶的实际应用。 为了克服这些缺陷,研究人员一直致力于开发可以替代天然酶的人工合成酶。 自从2007年,Fe3O4磁性纳米粒子被发现具有类似辣根过氧化物酶的活性之后,开发具有类似天然酶特性的纳米材料迅速引起了科研工作者的广泛兴趣。 2013年,正式将具有类似天然酶活性的纳米材料定义为纳米酶。 科研工作者已发现多种纳米酶,这些纳米酶可在不同环境下表现出不同的活性,主要包括过氧化物酶、氧化酶、过氧化氢酶和超氧化物歧化酶等。 目前,已经报道的纳米酶大致可以分为4类,包括金属氧化物纳米酶或硫化物纳米酶(氧化铁、氧化铈、氧化锰和氧化铜等)、碳基纳米酶(碳纳米管、氧化石墨烯和碳点等)、贵金属纳米酶(铂、金、银和钯等)和金属有机框架(MOF)基纳米酶等。 与天然酶相比,纳米酶具有很多优势,首先,纳米酶制备方法简单,成本较为低廉,为大规模生产提供了可能性。 此外,纳米材料所特有的一些物理化学特性也赋予了纳米酶更多独特的性质,如可以调节纳米粒子的形貌、结构和成分等使其在不同环境下表现出可调节的类酶活性; 而且纳米材料所拥有的独特性质,如磁效应、光热效应等,使其具备更广泛的设计空间,可以通过增加光照、热、超声波或磁场等外源因素影响纳米酶的催化行为,这些均可以作为调节纳米酶活性的可行策略。 同时,纳米酶具有较好的生物相容性和稳定性,可以使其重复利用。 基于如此多的优点,纳米酶在许多领域被广泛研究和利用,包括在分析检测、环境治理、有机化合物降解、疾病诊断和治疗等,特别是在传感应用领域具有很大的商业化前景,可以作为商业测量方法的响应。 在此,本文介绍了纳米酶的分类以及提高纳米酶催化活性的在尺寸、形貌、结构、组成、表面涂层和改性方面的策略。 同时,我们着重关注了传感领域,总结了其在生物小分子、生物大分子、酚类污染物、含有机磷的农药和离子检测等方面的进展,并提出关于利用纳米酶发挥传感功能的挑战的意见。
中图分类号:
卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86.
Jian-Tian LU, Jin-Hui ZOU, Bo-Lin ZHAO, Yu-Wei ZHANG. Research Progress on the Application of Inorganic Nanoparticle Enzyme in the Field of Analytical Sensing[J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 60-86.
图1 Fe-N/C催化剂(a) 2200、 (b) 400、 (c) 120和(d) 35 nm下的SEM图; (e) Fe-N/C催化剂的尺寸与氧化活性的关系图[17]Fig.?1 SEM images of Fe-N/C catalysts with size of 2200 (a), 400 (b), 120 (c) and 35 nm (d), respectively; (e) The size-dependent oxidase-like activities of Fe-N/C catalysts with different sizes[17]
图2 揭示触发分子对CeO2的面选择性响应以提高纳米酶的活性[24]
Fig.2 Facet-selective response of trigger molecule to CeO2 [110] is revealed for up-regulating oxidase-like activity of nanoceria[24]
图4 多环芳烃稳定的IrO2/GO纳米复合材料的制备及其对过氧化物酶AA检测示意图[30]
Fig.4 Schematic illustration of the preparation of PAH stabilized IrO2/GO nanocomposites and the colorimetric detection of AA based on the peroxidase-like activity of IrO2/GO nanocomposites[30]
图5 (A) F-捕获的被氧化酶倒转的纳米氧化铈示意图; (B)纳米氧化铈粒径分布和透射电子显微镜图; (C) ABTS (0.5 mmol/L)和(D) TMB (1 mmol/L)的紫外吸收光谱图[38]
Fig.5 (A) A scheme showing F--capped nanoceria with improved oxidase turnovers; (B) DLS size distribution and a TEM image (inset) of nanoceria; UV-Vis spectra of (C) ABTS (0.5 mmol/L) and (D) TMB (1 mmol/L) oxidation by nanoceria[38]
图6 (A) Fe3O4纳米粒子、(B) T-MIPneg和(C) A-MIPpos纳米凝胶对TMB和ABTS的氧化的光学照片图; (D) Fe3O4纳米粒子印记TMB的示意图[40]
Fig.6 Photographs showing the activity and specificity of (A) Fe3O4 NPs, (B) T-MIPneg and (C) A-MIPpos nanogels for oxidation of TMB and ABTS with or without H2O2; (D) A scheme of imprinting TMB on Fe3O4 NPs[40]
图8 CuBDC级联半胱氨酸氧化酶和过氧化物酶模拟活性和刺激响应的荧光示意图[51]
Fig.8 Schematic illustration of the cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence of CuBDC[51]
图9 以TMB作为指示剂的V2O5纳米片比色法检测谷胱甘肽的示意图[54]
Fig.9 Schematic illustration of V2O5 nanosheet based colorimetric assay for glutathione detection using TMB as the indicator[54]
图10 基于MnO2-Cu/Ag NCs-VB1体系的谷胱甘肽比率荧光检测的传感器示意图[56]
Fig.10 Schematic illustration of the ratiometric fluorescent sensor for GSH based on MnO2-Cu/Ag NCs-VB1 system[56]
图11 (A) MA-Hem/AueAg纳米复合材料纳米酶的制备流程示意图和(B)葡萄糖催化比色测试图[58]
Fig.11 Schematic illustration of (A) the fabrication procedure of MA-Hem/AueAg nanocomposite nanozymes and (B) the catalysis-based colorimetric test for glucose[58]
图12 (a) GOx葡萄糖氧化和H2O2介导的HRP催化TMB氧化的反应机制; (b)非酶葡萄糖识别采用仿生纳米酶级联法MGCN进行葡萄糖氧化,随后原位生成H2O2和几丁质AcOH分解H2O2和TMB氧化[60]
Fig.12 (a) Enzymatic scheme of GOx and HRP with H2O2-mediated TMB oxidation; (b) Non-enzymatic glucose recognition using a biomimetic nanozyme cascade method of MGCN for glucose oxidation with subsequent in-situ generation of H2O2 and chitin-AcOH for decomposition of H2O2 and TMB oxidation[60]
图13 利用CoOOH纳米片和OPD进行碱性磷酸酶活性荧光和比色双模式测定的示意图[61]
Fig.13 Scheme depiction of the fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity by using CoOOH nanoflakes and OPD[61]
图14 基于Pd/g-C3N4的比例荧光测定乙酰胆碱酯酶活性的示意图[62]
Fig.14 Illustration of the Pd/g-C3N4 based ratiometric fluorescence strategy for determination of AChE activity[62]
图15 模拟CH-Cu纳米酶的漆酶制备示意图,该纳米酶与天然漆酶的催化中心相似。 漆酶的PDB代码为1V10[65]
Fig.15 Schematic illustration of the preparation of laccase mimicking CH-Cu nanozymes, which resembles the catalytic center of natural laccase. PDB code of the laccase is 1V10[65]
图18 基于汞促进AuNPs纳米酶活性的AuNZ-PAD对Hg2+离子的比色传感机制示意图[72]
Fig.18 Schematic illustration of the AuNZ-PAD colorimetric sensing mechanism for Hg2+ ions based on the mercury-promoted nanozyme activity of AuNPs[72]
图20 CuS纳米粒子在Cr2O72-离子存在时在酸性介质中催化H2O2分解生成?OH-自由基并与对苯二甲酸反应形成荧光活性TA-OH配合物的示意图[77]
Fig.20 Representation of the decomposition of H2O2 catalyzed by CuS nanoparticles in the presence of Cr2O72- ions in acidic medium to generate ·OH- radicals and formation of fluorescent active TA-OH complex upon reaction with terephthalic acid[77]
图21 基于CuO纳米粒子自级联催化反应的Ag+离子检测机理示意图[81]
Fig.21 Schematic illustration of detection mechanism of Ag+ ions based on CuO NPs as self-cascade catalytical reaction[81]
图22 (A)用于催化H2O2辅助的AR氧化为试卤灵的CoOxH-GO纳米杂化物的制备, (B)葡萄糖氧化偶联CoOxH-GO纳米杂化物过氧化物酶用于葡萄糖检测, (C)基于抑制CoOxH-GO纳米杂化物酶活性的CN-离子检测, (D)用于氰化物离子传感的CoOxH-GO/N+M的制备[87]
Fig.22 Schematic representation of (A) the preparation of CoOxH-GO nanohybrid for the catalysis of H2O2 mediated oxidation of AR to resorufin, (B) glucose oxidase coupled with peroxidase-like CoOxH-GO nanohybrid for the detection of glucose, (C) detection of CN- ions based on the inhibition of the enzymatic activity of CoOxH-GO nanohybrid and (D) the fabrication of CoOxH-GO/N+M for sensing of cyanide ions[87]
1 | SHENG J, WU Y, DING H, et al. Multienzyme-like nanozymes: regulation, rational design, and application[J]. Adv Mater, 2023: 2211210. |
2 | DONG K, XU C, REN J S, et al. Chiral nanozymes for enantioselective biological catalysis[J]. Angew Chem Int Edit, 2022, 61(43): e202208757. |
3 | WU W, HUANG L, ZHU X, et al. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection[J]. Chem Sci, 2022, 13(16): 4566-4572. |
4 | BRESLOW R, OVERMAN L E. Artificial enzyme combining a metal catalytic group and a hydrophobic binding cavity[J]. J Am Chem Soc, 1970, 92(4): 1075-1077. |
5 | MIKOLAJCZAK D J, BERGER A A, KOKSCH B. Catalytically active peptide-gold nanoparticle conjugates: prospecting for artificial enzymes[J]. Angew Chem Int Ed, 2020, 59(23): 8776-8785. |
6 | MANEA F, HOUILLON F B, PASQUATO L, et al. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts[J]. Angew Chem Int Edit, 2004, 43(45): 6165-6169. |
7 | JIAO L, YAN H Y, WU Y, et al. When nanozymes meet single-atom catalysis[J]. Angew Chem Int Edit, 2020, 59(7): 2565-2576. |
8 | ZHANG L, WANG H, QU X. Biosystem‐inspired engineering of nanozymes for biomedical applications[J]. Adv Mater, 2023: 2211147. |
9 | HOU J, XIANYU Y. Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity[J]. Small, 2023, 19(42): 2302640. |
10 | HUANG Y Y, REN J S, QU X G. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications[J]. Chem Rev, 2019, 119(6): 4357-4412. |
11 | XU D, WU L, YAO H, et al. Catalase-like nanozymes: classification, catalytic mechanisms, and their applications[J]. Small, 2022, 18(37): 2203400. |
12 | ASATI A, SANTRA S, KAITTANIS C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angew Chem Int Ed, 2009, 48(13): 2308-2312. |
13 | COMOTTI M, DELLA PINA C, MATARRESE R, et al. The catalytic activity of “naked” gold particles[J]. Angew Chem Int Ed, 2004, 43(43): 5812-5815. |
14 | LI B, LONG R, ZHONG X L, et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching[J]. Small, 2012, 8(11): 1710-1716. |
15 | PENG F F, ZHANG Y, GU N. Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles[J]. Chin Chem Lett, 2008, 19(6): 730-733. |
16 | XIA F, HU X, ZHANG B, et al. Ultrasmall ruthenium nanoparticles with boosted antioxidant activity upregulate regulatory T cells for highly efficient liver injury therapy[J]. Small, 2022, 18(29): 2201558. |
17 | CHEN Q, LI S, LIU Y, et al. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase[J]. Sens Actuators B: Chem, 2020, 305: 127511. |
18 | XI Z, GAO W W, XIA X H. Size effect in Pd-Ir core-shell nanoparticles as nanozymes[J]. ChemBioChem, 2020, 21(17): 2440-2444. |
19 | WEI X S, LI X F, FENG Y Q, et al. Morphology- and pH-dependent peroxidase mimetic activity of nanoceria[J]. RSC Adv, 2018, 8(21): 11764-11770. |
20 | TIAN R, SUN J H, QI Y F, et al. Influence of VO2 nanoparticle morphology on the colorimetric assay of H2O2 and glucose[J]. Nanomaterials-Basel, 2017, 7(11): 347. |
21 | GE C C, FANG G, SHEN X M, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage[J]. ACS Nano, 2016, 10(11): 10436-10445. |
22 | XIE W, ZHANG G, GUO Z, et al. Shape-controllable and kinetically miscible copper-palladium bimetallic nanozymes with enhanced fenton-like performance for biocatalysis[J]. Mater Today Bio, 2022, 16: 100411. |
23 | XU Z, JIANG J, LI Y, et al. Shape-regulated photothermal-catalytic tumor therapy using polydopamine@Pt nanozymes with the elicitation of an immune response[J]. Small, 2023: 2309096. |
24 | HUANG L, ZHANG W, CHEN K, et al. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity[J]. Chem Eng J, 2017, 330: 746-752. |
25 | VERNEKAR A A, DAS T, GHOSH S, et al. A remarkably efficient MnFe2O4-based oxidase nanozyme[J]. Chem Asian J, 2016, 11(1): 72-76. |
26 | SINGH S, TRIPATHI P, KUMAR N, et al. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme[J]. Biosens Bioelectron, 2017, 92: 280-286. |
27 | WU J J X, QIN K, YUAN D, et al. Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes[J]. ACS Appl Mater Inter, 2018, 10(15): 12954-12959. |
28 | LV F, GONG Y Z, CAO Y Y, et al. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing[J]. Nanoscale Adv, 2020, 2(4): 1583-1589. |
29 | JIN Z Y, XU G F, NIU Y S, et al. Ti3C2Tx mxene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum[J]. J Mater Chem B, 2020, 8(16): 3513-3518. |
30 | SUN H Y, LIU X L, WANG X H, et al. Colorimetric determination of ascorbic acid using a polyallylamine-stabilized IrO2/graphene oxide nanozyme as a peroxidase mimic[J]. Microchim Acta, 2020, 187(2): 110. |
31 | WAN X, GE Y, ZHANG J, et al. A covalent organic framework derived N-doped carbon nanozyme as the all-rounder for targeted catalytic therapy and NIR-Ⅱ photothermal therapy of cancer[J]. ACS Appl Mater Inter, 2023, 15(38): 44763-44772. |
32 | WANG R, ZHANG T, ZHANG W, et al. Microperoxidase-11 functionalized nanozyme with enhanced peroxidase-mimicking activities for visual detection of cysteine[J]. Anal Chim Acta, 2023, 1267: 341386. |
33 | FENG N, LI Q, BAI Q, et al. Development of an Au-anchored Fe single-atom nanozyme for biocatalysis and enhanced tumor photothermal therapy[J]. J Colloid Interface Sci, 2022, 618: 68-77. |
34 | HE N, ZHU X, LIU F, et al. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates[J]. Chem Eng J, 2022, 445: 136543. |
35 | LIU B W, LIU J W. Surface modification of nanozymes[J]. Nano Res, 2017, 10(4): 1125-1148. |
36 | NAHA P C, LIU Y, HWANG G, et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption[J]. ACS Nano, 2019, 13(5): 4960-4971. |
37 | LU W H, ZHANG J X, LI N L, et al. Co3O4@beta-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid[J]. Sens Actuators B: Chem, 2020, 303: 127106. |
38 | LIU B W, HUANG Z C, LIU J W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F- detection[J]. Nanoscale, 2016, 8(28): 13562-13567. |
39 | SONG J Y, LI H F, SHEN H, et al. Fluoride capped V6O13-reduced graphene oxide nanocomposites: high activity oxidase mimetics and mechanism investigation[J]. New J Chem, 2019, 43(48): 19053-19062. |
40 | ZHANG Z J, ZHANG X H, LIU B W, et al. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity[J]. J Am Chem Soc, 2017, 139(15): 5412-5419. |
41 | FENG M, LI X, ZHANG X, et al. Recent advances in the development and analytical applications of oxidase-like nanozymes[J]. TrAC-Trends Anal Chem, 2023, 166: 117220. |
42 | CHI Z, WANG Q, GU J. Recent advances in colorimetric sensors based on nanozymes with peroxidase-like activity[J]. The Analyst, 2023, 148(3): 487-506. |
43 | GONG X J, LIU Y, YANG Z H, et al. An “on-off-on” fluorescent nanoprobe for recognition of chromium(Ⅵ) and ascorbic acid based on phosphorus/nitrogen dualdoped carbon quantum dot[J]. Anal Chim Acta, 2017, 968: 85-96. |
44 | WANG K, LIU J, WANG X, et al. Ratiometric fluorescent detection system based on dual-driving catalysis of CuO nanozyme with a classical univariate calibration for the determination of ascorbic acid in serum and fruits[J]. Microchem J, 2022, 172: 106921. |
45 | LIU B, XUE Y T, GAO Z Y, et al. Antioxidant identification using a colorimetric sensor array based on Co-N-C nanozyme[J]. Colloid Surface B, 2021, 208: 112060. |
46 | ZHANG J, LV Y L, ZHANG W, et al. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity[J]. Talanta, 2016, 146: 41-48. |
47 | CHEN C, WANG Y, ZHANG D. Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine[J]. Microchim Acta, 2019, 186(12): 784. |
48 | LI Y F, ZHANG Z Y, TAO Z H, et al. A Asp/Ce nanotube-based colorimetric nanosensor for H2O2-free and enzyme-free detection of cysteine[J]. Talanta, 2019, 196: 556-562. |
49 | SUN L J, LIU C, SUN J W. Penguin with bow tie-like bimetallic metal organic framework as colorimetric biosensing for H2O2 and L-cysteine[J]. J Coord Chem, 2021, 74(11): 1891-1906. |
50 | JIN T, LI Y L, JING W J, et al. Cobalt-based metal organic frameworks: a highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol[J]. Chem Commun, 2020, 56(4): 659-662. |
51 | LI X, ZHOU H, QI F, et al. Three hidden talents in one framework: a terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing[J]. J Mater Chem B, 2019, 7(15): 2565-2565. |
52 | QI S J, LIU W M, ZHANG P P, et al. A colorimetric and ratiometric fluorescent probe for highly selective detection of glutathione in the mitochondria of living cells[J]. Sens Actuators B: Chem, 2018, 270: 459-465. |
53 | LI W Y, WANG J Y, ZHU J C, et al. Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione[J]. J Mater Chem B, 2018, 6(42): 6858-6864. |
54 | GANGANBOINA A B, DOONG R A. The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione[J]. Sens Actuators B: Chem, 2018, 273: 1179-1186. |
55 | TAN X F, ZHANG L H, TANG Q R, et al. Ratiometric fluorescent immunoassay for the cardiac troponin-i using carbon dots and palladium-iridium nanocubes with peroxidase-mimicking activity[J]. Microchim Acta, 2019, 186(5): 280. |
56 | HU X, LIU X D, ZHANG X D, et al. MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione[J]. Sens Actuators B: Chem, 2019, 286: 476-482. |
57 | LIU A, LI M M, WANG J X, et al. Ag@Au core/shell triangular nanoplates with dual enzyme-like properties for the colorimetric sensing of glucose[J]. Chin Chem Lett, 2020, 31(5): 1133-1136. |
58 | LIU H, HUA Y, CAI Y Y, et al. Mineralizing gold-silver bimetals into hemin-melamine matrix: a nanocomposite nanozyme for visual colorimetric analysis of H2O2 and glucose[J]. Anal Chim Acta, 2019, 1092: 57-65. |
59 | ADENIYI O, SICWETSHA S, MASHAZI P. Nanomagnet-silica nanoparticles decorated with Au@Pd for enhanced peroxidase-like activity and colorimetric glucose sensing [J]. ACS Appl Mater Inter, 2019, 12(2): 1973-1987. |
60 | SENGUPTA P, PRAMANIK K, DATTA P, et al. Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for “click off” colorimetric detection of peroxide and glucose[J]. Biosens Bioelectron, 2020, 154: 112072. |
61 | LIU S G, HAN L, LI N, et al. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like coooh nanoflakes[J]. J Mater Chem B, 2018, 6(18): 2843-2850. |
62 | ZHANG C, NI P, WANG B, et al. Enhanced oxidase-like activity of g-C3N4 nanosheets supported Pd nanosheets for ratiometric fluorescence detection of acetylcholinesterase activity and its inhibitor[J]. Chin Chem Lett, 2022, 33(2): 757-761. |
63 | JIANG J F, HE C Y, WANG S, et al. Recyclable ferromagnetic chitosan nanozyme for decomposing phenol[J]. Carbohyd Polym, 2018, 198: 348-353. |
64 | WANG B, HUANG B, JIN W, et al. Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around dianchi lake in china[J]. Environ Sci Pollut R, 2013, 20(5): 3185-3194. |
65 | WANG J H, HUANG R L, QI W, et al. Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants [J]. Appl Catal B: Environ, 2019, 254: 452-462. |
66 | XU X J, WANG J H, HUANG R L, et al. Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants[J]. Catal Sci Technol, 2021, 11(10): 3402-3410. |
67 | KOYAPPAYIL A, KIM H T, LEE M H. “Laccase-like” properties of coral-like silver citrate micro-structures for the degradation and determination of phenolic pollutants and adrenaline[J]. J Hazard Mater, 2021, 412: 125211. |
68 | LIANG X, HAN L. White peroxidase-mimicking nanozymes: colorimetric pesticide assay without interferences of O2 and color[J]. Adv Funct Mater, 2020, 30(28): 2001933. |
69 | WEERATHUNGE P, BEHERA B K, ZIHARA S, et al. Dynamic interactions between peroxidase-mimic silver nanozymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water[J]. Anal Chim Acta, 2019, 1083: 157-165. |
70 | HUANG L J, SUN D W, PU H B, et al. A colorimetric paper sensor based on the domino reaction of acetylcholinesterase and degradable gamma-mnooh nanozyme for sensitive detection of organophosphorus pesticides[J]. Sens Actuators B: Chem, 2019, 290: 573-580. |
71 | LI Q, WU F, MAO M, et al. A dual-mode colorimetric sensor based on copper nanoparticles for the detection of mercury-(Ⅱ) ions[J]. Anal Methods, 2019, 11(31): 4014-4021. |
72 | HAN K N, CHOI J S, KWON J. Gold nanozyme-based paper chip for colorimetric detection of mercury ions[J]. Sci Rep, 2017, 7: 2086. |
73 | NIU X H, HE Y F, LI X, et al. A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids[J]. Sens Actuators B: Chem, 2019, 281: 445-452. |
74 | FANG Y M, ZHANG Y, CAO L G, et al. Portable Hg2+ nanosensor with ppt level sensitivity using nanozyme as the recognition unit, enrichment carrier, and signal amplifier[J]. ACS Appl Mater Inter, 2020, 12(10): 11761-11768. |
75 | ZHUANG Y T, CHEN S, JIANG R, et al. Ultrasensitive colorimetric chromium chemosensor based on dye color switching under the Cr(Ⅵ)-stimulated Au NPs catalytic activity[J]. Anal Chem, 2019, 91(8): 5346-5353. |
76 | XUE Q S, LI X, PENG Y X, et al. Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(Ⅵ)[J]. Microchim Acta, 2020, 187(5): 263. |
77 | BORTHAKUR P, DAS M R, SZUNERITS S, et al. CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr(Ⅵ) in an aqueous medium[J]. ACS Sustainable Chem Eng, 2019, 7(19): 16131-16143. |
78 | FU H Y, YIN Q B, WANG H L, et al. Target-triggered in situ autocatalysis in nanopore membrane for point-of-care testing of sub-nanomolar Ag+[J]. Sens Actuators B: Chem, 2019, 287: 290-295. |
79 | THAMARAISELVI P, DURAIPANDY N, KIRAN M S, et al. Triarylamine rhodanine derivatives as red emissive sensor for discriminative detection of Ag+ and Hg2+ ions in buffer-free aqueous solutions[J]. ACS Sustainable Chem Eng, 2019, 7(11): 9865-9874. |
80 | ZHAO C, KONG X G, SHUANG S M, et al. An anthraquinone-imidazole-based colorimetric and fluorescent sensor for the sequential detection of Ag+ and biothiols in living cells[J]. Analyst, 2020, 145(8): 3029-3037. |
81 | HE L Y, LU Y X, GAO X Y, et al. Self-cascade system based on cupric oxide nanoparticles as dual-functional enzyme mimics for ultrasensitive detection of silver ions[J]. ACS Sustainable Chem Eng, 2018, 6(9): 12132-12139. |
82 | JIMENEZ D, MARTINEZ-MANEZ R, SANCENON F, et al. A new chromo-chemodosimeter selective for sulfide anion[J]. J Am Chem Soc, 2003, 125(30): 9000-9001. |
83 | SONG S S, SONG D D, TANG H C, et al. Ionogels as precursors to prepare zns nanoparticles for colorimetric sensing of sulfide ions[J]. ACS Sustainable Chem Eng, 2020, 8(2): 759-770. |
84 | LIU X N, HUANG L J, WANG Y P, et al. One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing[J]. Sens Actuators B: Chem, 2020, 306: 127565. |
85 | BAI C B, LIU X Y, ZHANG J, et al. Using smartphone app to determine the CN- concentration quantitatively in tap water: synthesis of the naked-eye colorimetric chemosensor for CN- and Ni2+ based on benzothiazole[J]. ACS Omega, 2020, 5(5): 2488-2494. |
86 | DAI Z, BOON E M. Engineering of the heme pocket of an H-Nox domain for direct cyanide detection and quantification[J]. J Am Chem Soc, 2010, 132(33): 11496-11503. |
87 | LIEN C W, UNNIKRISHNAN B, HARROUN S G, et al. Visual detection of cyanide ions by membrane-based nanozyme assay[J]. Biosens Bioelectron, 2018, 102: 510-517. |
88 | NATH P, PRIYADARSHNI N, CHANDA N. Europium-coordinated gold nanoparticles on paper for the colorimetric detection of arsenic(Ⅲ, Ⅴ) in aqueous solution[J]. ACS Appl Nano Mater, 2018, 1(1): 73-81. |
89 | PRIYADARSHNI N, NATH P, NAGAHANUMAIAH, et al. Dmsa-functionalized gold nanorod on paper for colorimetric detection and estimation of arsenic (Ⅲ and Ⅴ) contamination in groundwater[J]. ACS Sustainable Chem Eng, 2018, 6(5): 6264-6272. |
90 | WEN S H, ZHONG X L, WU Y D, et al. Colorimetric assay conversion to highly sensitive electrochemical assay for bimodal detection of arsenate based on cobalt oxyhydroxide nanozyme via arsenate absorption[J]. Anal Chem, 2019, 91(10): 6487-6497. |
[1] | 徐一, 林梦瑶, 宫晓群. 多色比色法在生物传感平台的研究进展[J]. 应用化学, 2024, 41(1): 3-20. |
[2] | 谭翠盈, 丁威超, 马婷婷, 肖瑶, 刘健. 超亲水/超疏气电解水催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1109-1125. |
[3] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[4] | 柳小虎, 赖小娟, 曹红燕, 王婷婷, 党志强. 起泡剂/稳泡剂/SiO2复合泡沫缓速酸液体系协同增效性能[J]. 应用化学, 2023, 40(1): 91-99. |
[5] | 杜慧, 姚晨阳, 彭皓, 姜波, 李顺祥, 姚俊烈, 郑方, 杨方, 吴爱国. 过渡金属掺杂磁性纳米粒子在生物医学领域中的研究进展[J]. 应用化学, 2022, 39(3): 391-406. |
[6] | 赵春梅, 周秀苗, 金茜茜, 王雨杭, 党祎静. 基于马鞍形环八四噻吩的复合纳米材料的制备及发光性能[J]. 应用化学, 2022, 39(02): 283-288. |
[7] | 黄晓桐, 陈颖欣, 朱泽滨, 周丽华. 基于纳米材料光谱分析法检测抗坏血酸的研究进展[J]. 应用化学, 2021, 38(6): 637-650. |
[8] | 赵越, 孟祥芹, 阎锡蕴, 范克龙. 纳米酶:一种新型的生物安全材料[J]. 应用化学, 2021, 38(5): 524-545. |
[9] | 刘娇, 邹鹏飞, 李平, 张潇, 王欣欣, 高媛媛, 李莉莉. 多肽类自组装纳米材料对抗细菌耐药的研究进展[J]. 应用化学, 2021, 38(5): 546-558. |
[10] | 刘林昌, 郭亚君, 朱红林, 马静静, 李忠义, 水淼, 郑岳青. 负载型超细纳米材料催化氨硼烷水解制氢的研究进展[J]. 应用化学, 2021, 38(11): 1405-1422. |
[11] | 高明, 赵开东, 刘祥永, 金元哲. 二硫化钼纳米材料的制备及其对心肌细胞的保护作用[J]. 应用化学, 2020, 37(9): 1010-1021. |
[12] | 姚美任, 王康军, 张雅静, 王东平. 大位阻手性吡咯烷(salen)Mn(III)配合物在烯烃不对称环氧化反应中的应用[J]. 应用化学, 2020, 37(8): 889-895. |
[13] | 蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745. |
[14] | 樊哲,张盛盛,唐家豪,范萍. 分级纳米材料的结构、制备及其应用[J]. 应用化学, 2020, 37(5): 489-501. |
[15] | 王春丽,孙连山,钟鸣,王立民,程勇. 过渡金属及其化合物应用于锂硫电池的研究进展[J]. 应用化学, 2020, 37(4): 387-404. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 383
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||