应用化学 ›› 2023, Vol. 40 ›› Issue (4): 476-485.DOI: 10.19894/j.issn.1000-0518.220287
兰晓琳1(), 郑红星2(), 张依帆1, 赵振3, 肖和业4, 王志江, 邓鹏飏1
收稿日期:
2022-08-30
接受日期:
2023-01-06
出版日期:
2023-04-01
发布日期:
2023-04-17
通讯作者:
兰晓琳,郑红星
基金资助:
Xiao-Lin LAN1(), Hong-Xing ZHENG2(), Yi-Fan ZHANG1, Zhen ZHAO3, He-Ye XIAO4, Zhi-Jiang WANG, Peng-Yang DENG1
Received:
2022-08-30
Accepted:
2023-01-06
Published:
2023-04-01
Online:
2023-04-17
Contact:
Xiao-Lin LAN,Hong-Xing ZHENG
About author:
zhx203@126.comSupported by:
摘要:
陶瓷粉体的纯度、微观形貌和均匀度等性质会影响陶瓷产品的最终性能,因此实现碳化硅粉体材料的可控合成是目前碳化硅材料制备领域的研究重点。本文以碳化硅材料为主体,综述了目前碳化硅生产的主要方法。重点结合常压高温固相反应体系下,基于气-液-固(VLS)机制以及气-固(VS)机制生长机理探讨了温度、原料、催化剂、气体过饱和度等因素对碳化硅陶瓷粉体制备过程中的具体影响。实现碳化硅陶瓷粉体的可控合成对碳化硅材料规模化生产、应用及后续制备陶瓷产品具有重要的理论价值和指导意义。
中图分类号:
兰晓琳, 郑红星, 张依帆, 赵振, 肖和业, 王志江, 邓鹏飏. 常压高温固相反应制备SiC陶瓷粉体的研究进展[J]. 应用化学, 2023, 40(4): 476-485.
Xiao-Lin LAN, Hong-Xing ZHENG, Yi-Fan ZHANG, Zhen ZHAO, He-Ye XIAO, Zhi-Jiang WANG, Peng-Yang DENG. Research Progress on Preparation of SiC Ceramic Powders by Atmospheric High Temperature Solid Phase Reaction[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 476-485.
图2 不同原料制备SiC的SEM图像
Fig.2 SEM images of SiC prepared from different raw materialsNote: a. loofah flesh[48]; b. bayberry[49]; c. cotton[50]; d. egg inner membrane[51]
图4 不同温度下制备的生物质纤维素抄造的纸浆板制备的SiC材料的SEM图[30]
Fig.4 SEM images of paper-derived silicon carbide prepared at different temperatures[30]Note: a. 1400 ℃; b. 1500 ℃; c. 1600 ℃
1 | 许庭翔. 碳化硅晶体本征缺陷及其性能调控研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2021. |
XU T X. Study on intrinsic defects of silicon carbide crystal and its performance regulation[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2021. | |
2 | YE F, DUAN W Y, MO R, et al. Silicon oxycarbide powders doped with in situ grown SiC nanowires: synthesis and dielectric properties[J]. Rare Met Mater Eng, 2019, 48(1): 39-43. |
3 | BAE S G, OH M, LEE Y, et al. Preparation of silicon carbide nanowires and study on absorbing properties[J]. Ceram Int, 2022, 48(9): 13295-13303. |
4 | PAPANASAM E, KUMAR B P, CHANTHINI B. et al. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications[J]. Silicon, 2022, 14: 12887-12900. |
5 | CAO Y, DONG H, PU S, et al. Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport[J]. Nano Res, 2018, 11(8): 4074-4081. |
6 | NGUYEN T K, PHAN H P, KAMBLE H, et al. Superior robust ultrathin single-crystalline silicon carbide membrane as a versatile platform for biological applications[J]. ACS Appl Mater Interfaces, 2017, 9(48): 41641-41647. |
7 | AKIN I, KAYA O. Microstructures and properties of silicon carbide- and graphene nanoplatelet-reinforced titanium diboride composites[J]. J Alloys Compd, 2017, 729: 949-959. |
8 | WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. J Mater Chem A, 2015, 3(12): 6517-6525. |
9 | PENG Y, HAN G, WANG D, et al. Improved H-2, evolution under visible light in heterostructured SiC/CdS photocatalyst: effect of lattice match[J]. Int J Hydrogen Energy, 2017, 42(21): 14409-14417. |
10 | AEGISS E. Nano: the emerging science of nanotechnology: remaking the world-molecule by molecule[M]. Boston: Little Brown and Company, 1995. |
11 | KUANG J L, JIANG P, HOU X J. Dielectric permittivity and microwave absorption properties of SiC nanowires with different lengths[J]. Solid State Sci, 2019, 91: 73-76. |
12 | ZHU H S, QIA Q, SHI L Q. SiC nanorods of highly preferred orientation prepared by radio frequency magnetron sputtering[J]. J Vac Sci Technol B, 2013, 31: 060604. |
13 | CHEN X Y, ZHANG Q, ZHOU Y. Synthesis of bamboo-like 3C-SiC nanowires with good luminescent property via nano-ZrO2 catalyzed chemical vapor deposition technique[J]. Ceram Int, 2018, 44: 22890-22896. |
14 | GU W J, JIA S Q, QIU J D, et al. Preparation of SiC whiskers from rice husk[J]. J Chin Ceram Soc, 2014, 42(1): 28-32. |
15 | YUAN Q, LI Y Q, SONG Y C. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method[J]. Ceram Int, 2017, 43(12): 9128-9132. |
16 | TAO P F, WANG Y G. Fabrication of highly dense three-layer SiC cladding tube by chemical vapor infiltration method[J]. J Am Ceram Soc, 2019, 102(11): 6939-6945. |
17 | 汪涵, 尹珑龙, 郭晴, 等. 纳米碳化硅的制备与应用研究进展[J]. 广东化工, 2022, 49(8): 84-86. |
WANG H, YIN L L, GUO Q, et al. Research prospects of application and preparation of nano-silcon carbon[J]. Guangdong Chem Ind, 2022, 49(8): 84-86. | |
18 | BOUDARD D, FOREST V, POURCHEZ J, et al. In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects[J]. Toxicol In Vitro, 2014, 28(5): 856-865. |
19 | 罗昊, 张序清, 杨德仁, 等. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J].人工晶体学报, 2021, 50(8): 1562-1574. |
LUO H, ZHANG X Q, YANG D R, et al. Rsearch progress on high-purity SiC powder for single crystal SiC growth[J]. J Synth Cryst, 2021, 50(8): 1562-1574. | |
20 | HART A H C, OWUOR P S, HAMEL J, et al. Ultra-low density three-dimensional nano-silicon carbide architecture with high temperature resistance and mechanical strength[J]. Carbon, 2020, 164: 143-149. |
21 | 朱文振, 郑治祥, 姜坤, 等. 碳热还原法低温制备碳化硅微粉[J]. 硅酸盐通报, 2012, 31(1): 46-49. |
ZHU W Z, DENG Z X, JIANG K, et al. Preparation of silicon carbide micropowder at low temperature by carbothermal reduction[J]. Bull Chin Ceramic Soc, 2012, 31(1): 46-49. | |
22 | ZHANG H, XU Y, ZHOU J, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. J Mater Chem C, 2015, 3(17): 4416-4423. |
23 | WU X S, WU, X S, ZHU, Y Z, et al. Joining of SiC ceramic by Si-C reaction bonding using organic resin as carbon precursor[J]. Materials, 2022, 15(12): 4242. |
24 | WEI B, ZHOU J T, CHEN W J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Appl Surf Sci, 2020, 508: 145261. |
25 | ZHANG Y, QIAN L, ZHAO W, et al. Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction[J]. J Electrochem Soc, 2018, 165: 510-516. |
26 | ZEKENTES K, CHOI J, STAMBOULI V, et al. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications[J]. Microelectron Eng, 2022, 255: 111704. |
27 | CUTLER I B. Production of SiC from rice hulls.US patent 3754076[P].1973-8-12. |
28 | GREIL P, LIFKA T, KAINDL A. Biomorphic cellular silicon carbide ceramics from wood: II. mechanical properties[J]. J Eur Ceram Soc, 1998, 18(14): 1975-1983. |
29 | LIU C, YU D, KIRK D W, et al. Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance[J]. J Mater Chem C, 2016, 4(23): 5349-5356. |
30 | LAN X, LIANG C, WU M, et al. Facile synthesis of highly defected SiC sheets for efficient absorption of electromagnetic waves[J]. J Phys Chem C, 2018, 122(32): 18537-18544. |
31 | MIZERSKA U, FORTUNIAK W, CHOJNOWSKI J, et al. Porous SiC and SiC/Cf ceramic microspheres derived from polyhydromethylsiloxane by carbothermal reduction materials[J]. Materials, 2022, 15(1): 81. |
32 | ZHANG X, HUANG X, WEN G, et al. Novel SiOC nanocomposites for high-yield preparation of ultra-large-scale SiC nanowires[J]. Nanotechnology, 2010, 21(38): 385601. |
33 | CHEN H, JIANG J, ZHAO H. Synthesis of highly dispersed silicon carbide powders by a solvothermal-assisted sol-gel process[J]. Appl Phys A, 2018, 124(7): 470. |
34 | 肖飞飞, 李蛟, 樊震坤, 等. 聚合物转化陶瓷在吸波领域的研究进展[J]. 山东陶瓷, 2019, 42(6): 3-6. |
XIAO F F, LI J, FAN Z K, et al. Research progress of polymer-converted ceramics in the field of wave absorbing[J]. Shandong Ceram, 2019, 42(6): 3-6. | |
35 | 丁丽娟. 碳化硅纳米线的生长热力学分析及制备研究[D]. 杭州: 浙江理工大学, 2017. |
DING L J. Growth thermodynamic analysis and preparation of silicon carbide nanowires[D]. Hangzhou: Zhejiang Sci-Tech University, 2017. | |
36 | 邱泽超. 枝状碳化硅制备及吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
QIU Z C. Preparation and absorbing properties of dendritic silicon carbide[D]. Harbin: Harbin Institute of Technology, 2018. | |
37 | JU C H, ZHENG X, GOU C, et al. Sulfur-assisted approach for the low-temperature synthesis of β-SiC nanowires[J].Eur J Inorg Chem, 2008(24): 3883-3888. |
38 | GE Y C, LIU Y Q, SHUAI W U, et al. Characterization of SiC nanowires prepared on C/C composite without catalyst by CVD[J]. Trans Nonferrous Met Soc China, 2015, 25(10): 3258-3264. |
39 | WU J, QIAN S T, HUO, T G, et al. Effect of PyC inner coating on preparation of 3C-SiC coating on quartz glass by chemical vapor reaction[J]. Front Mater, 2022, 9: 897900. |
40 | ATTOLINI G, ROSSI F, NEGRI M, et al. Growth of SiC nws by vapor phase technique using Fe as catalyst[J]. Mater Lett, 2014, 124(6): 169-172. |
41 | 杨涛. 一维3C-SiC纳米结构光/电特性调控与应用[D]. 北京: 北京科技大学, 2018. |
YANG T. One-dimensional 3C-SiC nanostructure optical/electrical properties regulation and application[D]. Beijing: Beijing University of Science and Technology, 2018. | |
42 | 李俭国. 超快激光诱导碳化硅表面改性机理研究[D]. 广州: 广东工业大学, 2020. |
LI J G. Study on the mechanism of ultrafast laser-induced surface modification of silicon carbide[D]. Guangzhou: Guangdong University of Technology, 2020. | |
43 | AMIN J, HAMID T, OMID T. Potency of different carbon sources in reduction of microsilica to synthesize SiC from mechanically activated powder mixtures[J]. Int J Appl Ceram Technol, 2016, 13(5): 937-947. |
44 | MAGNANI G, GALVAGNO S, SICO G, et al. Sintering and mechanical properties of β-SiC powder obtained from waste tires[J]. J Adv Ceram, 2016, 5(1): 40-46. |
45 | WAGNER R S. On the growth of germanium dendrites[J]. Acta Metall, 1960, 8(1): 57-60. |
46 | 李雪婷. 碳化硅纳米线基多元吸波材料的制备与性能研究[D]. 西安: 西安建筑科技大学, 2021. |
LI X T. Preparation and properties of silicon carbide nanowire-based multicomponent absorbers[D]. Xi'an: Xi'an University of Architecture and Technology, 2021. | |
47 | DUAN W, YIN X, LI Q, et al. Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic[J]. J Eur Ceram Soc, 2014, 34: 257-266. |
48 | LIU L, YANG S, HU H T, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons[J]. ACS Sustainable Chem Eng, 2018, 7(1): 1228-1238. |
49 | SUN X, YANF M, YANG S, et al. Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure[J]. Small, 2019, 15(43): 1902974. |
50 | ZHAO H, CHENG Y, MA J, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber[J]. Chem Eng J, 2018, 339: 432-441. |
51 | HUANG L, LI J, WANG Z, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane[J]. Carbon, 2019, 143: 507-516. |
52 | MAITY A, DAS H, KALITA D, et al. Studies on formation and siliconization of carbon template of coir fibreboard precursor to SiC ceramics[J]. J Eur Ceram Soc, 2014, 34(15): 3499-3511. |
53 | WANG H, WU L, JIAO J, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. J Mater Chem A, 2015, 3(12): 6517-6525. |
54 | DAI H, WONG E W, LU Y Z, et al. Synthesis and characterization of carbide nanorods[J]. Nature, 1995, 375(6534): 769-772. |
55 | MENG G W, CUI Z, ZHANG L D, et al. Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 aerogels containing carbon nanoparticles[J]. J Cryst Growth, 2000, 209(4): 801-806. |
56 | HAN M, YIN X, HOU Z, et al. Flexible and thermostable graphene/SiC nanowires foam composites with tunable electromagnetic wave absorption properties[J]. ACS Appl Mater Interfaces, 2017, 9(13): 11803. |
57 | GAO L, ZHONG H, CHEN Q. Synthesis of 3C-SiC nanowires by reaction of poly(ethylene terephthalate) waste with SiO2 microspheres[J]. J Alloys Compd, 2013, 566(2): 212-216. |
58 | 张颖, 蒋明学, 张军战. 合成温度对碳热还原法合成碳化硅晶须形貌的影响[J]. 人工晶体学报, 2010, 39(2): 369-374. |
ZHANG Y, JIANG M X, ZHANG J Z. Effect of synthesis temperature on morphology of silicon carbide whisker synthesized by carbothermal reduction[J]. J Synth Cryst, 2010, 39(2): 369-374. | |
59 | FENG W, MA J, YANG W. Precise control on the growth of SiC nanowires[J]. Crystengcomm, 2012, 14(4): 1210-1212. |
60 | XIA Y, YANG P, SUN Y. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Adv Mater, 2010, 15(5): 353-389. |
61 | SEO W S, KOUMOTO K. Stacking faults in β-SiC formed during carbothermal reduction of SiO2[J]. J Am Ceram Soc, 1996, 79(7): 1777-1782. |
62 | LEE J S, BYEUN Y K, LEE S H, et al. In situ growth of SiC nanowires by carbothermal reduction using a mixture of low-purity SiO2 and carbon[J]. J Alloys Compd, 2008, 456(1): 257-263. |
63 | 张晓东. 准一维SiC和Si3N4纳米材料的合成与表征[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
ZHANG X D. Synthesis and characterization of quasi-one-dimensional SiC and Si3N4 nanomaterials[D]. Harbin: Harbin Institute of Technology, 2010. | |
64 | WEI J, LI K, CHEN J, et al. Synthesis of centimeter-scale ultra-long SiC nanowires by simple catalyst-free chemical vapor deposition[J]. J Cryst Growth, 2011, 335(1): 160-164. |
65 | CHEN J J, PAN Y, TANG W H, et al. Tuning the morphologies of SiC nanowires via the change of the CoxSiy melts[J]. Nano-Micro Lett, 2010, 2(1): 11-17. |
66 | 李心慰, 曲殿利, 李志坚, 等. 合成碳化硅的热力学分析及碳化硅晶须生长的表征[J]. 人工晶体学报, 2013, 42(10): 2160-2163. |
LI X W, QU D L, LI Z J, et al. Thermodynamic analysis of synthesized silicon carbide and characterization of silicon carbide whisker growth[J]. J Synth Cryst, 2013, 42(10): 2160-2163. | |
67 | YAO W Q, LIU H T, SUN J Z, et al. Engineering of chemical vapor deposition graphene layers: growth, characterization, and properties[J]. Adv Funct Mater, 2022: 2202584. |
68 | CHEN S L, LI W J, LI X X, et al. One-dimensional SiC nanostructures: designed growth, properties, and applications[J]. Prog Mater Sci, 2019, 104: 138-214. |
69 | ZEKENTES K, CHOU J, STAMBOULI V, et al. Progress in SiC nanowire field-effect-transistors for integrated circuits and sensing applications[J]. Microelectron Eng, 2022, 255: 111704 |
70 | HU P, DONG S, ZHANG D Y, et al. Catalyst-assisted synthesis of core-shell SiC/SiO2 nanowires via a simple method[J]. Ceram Int, 2016, 42: 1581-1587. |
71 | ZHANG M, LI Z J, ZHAO J, et al. Amorphous carbon coating for improving the field emission performance of SiC nanowire cores[J]. J Mater Chem C, 2015, 3(3): 658-663. |
72 | HE W Z, CHEN C Q, XU Z P, et al. Molecular dynamics simulations of silicon carbide nanowires under single-ion irradiation[J]. J Appl Phys, 2019, 126(12): 125902. |
[1] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[2] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[3] | 王兵, 唐敏, 王颖, 刘志光. 微氧化烧结制备掺杂Y2O3的SiC陶瓷及含镉模拟废水处理[J]. 应用化学, 2022, 39(8): 1312-1318. |
[4] | 赵常利, 秦明高, 窦晓秋, 冯传良. 纳米颗粒增强的手性超分子水凝胶成骨性能[J]. 应用化学, 2022, 39(1): 177-187. |
[5] | 崔昊, 王倩倩, 王晓琳, 何向明, 徐宏. 面向极紫外:光刻胶的发展回顾与展望[J]. 应用化学, 2021, 38(9): 1154-1167. |
[6] | 陈松华, 陈欣, 刘永琦, 何美云, 付珊珊, 彭丽, 杨纪恩. 苯并噻二唑类化合物一维微-纳米线的制备及光波导性能[J]. 应用化学, 2021, 38(11): 1479-1485. |
[7] | 孙小彤,陈南,梁含雪,李增领,刘倩雯,曲良体. 阳极氧化铝模板限域制备一维杂化纳米材料及其多样化应用的研究进展[J]. 应用化学, 2020, 37(2): 123-133. |
[8] | 刘兵, 宫辉力, 刘锐, 胡长文. 一步法制备二氧化钛-金复合材料及其光解水制氢性能[J]. 应用化学, 2019, 36(9): 1076-1084. |
[9] | 孙雪娇, 王思琦, 董佳, 吴骑, 刘蕊, 李想, 于世钧, 张治广. Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, 36(3): 314-323. |
[10] | 孙雪娇, 王思琦, 董佳, 吴骑, 刘蕊, 李想, 于世钧, 张治广. Ag/NH2-MIL-125(Ti)的构建及可见光还原水中Cr(Ⅵ)[J]. 应用化学, 2019, 36(3): 0-0. |
[11] | 李晶晶, 樊江莉, 彭孝军. 基于细乳液聚合的纳米颗粒制备与应用研究进展—撤稿(Withdrawed)[J]. 应用化学, 2018, 35(9): 1026-1036. |
[12] | 刘星煜, 胡志明, 吴鹏飞, 董喜超, 郭长青, 苏智明, 刘安华. 掺铁碳化硅陶瓷的制备及其吸波性能[J]. 应用化学, 2018, 35(2): 224-231. |
[13] | 张晓琴, 吴江, 王建太, 闫驰, 付莹莹, 谢志元. 基于银纳米线复合透明电极的可弯折柔性聚合物太阳能电池[J]. 应用化学, 2018, 35(1): 109-115. |
[14] | 王翠, 张飞云, 吕荣文, 张淑芬. 金纳米颗粒表面能量转移及巯基化合物的检测[J]. 应用化学, 2018, 35(1): 60-67. |
[15] | 吴业红, 赵霞, 胡君, 林园, 王倩. 球状功能性烟草花叶病毒纳米颗粒的制备及表征[J]. 应用化学, 2017, 34(4): 379-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||