应用化学 ›› 2023, Vol. 40 ›› Issue (4): 463-475.DOI: 10.19894/j.issn.1000-0518.220228
• 综合评述 • 下一篇
刘明言1,2, 石秀顶1,2, 李天国4, 王静1,2,3()
收稿日期:
2022-07-01
接受日期:
2022-11-21
出版日期:
2023-04-01
发布日期:
2023-04-17
通讯作者:
王静
基金资助:
Ming-Yan LIU1,2, Xiu-Ding SHI1,2, Tian-Guo LI4, Jing WANG1,2,3()
Received:
2022-07-01
Accepted:
2022-11-21
Published:
2023-04-01
Online:
2023-04-17
Contact:
Jing WANG
About author:
88333732@qq.comSupported by:
摘要:
重金属难以生物降解,对环境和人类生命健康造成了严重威胁,因此,重金属的检测和重金属污染的治理十分必要。近年来,电化学分析方法对重金属离子的检测具有灵敏度高,分析速度快,可同时对多种金属离子进行检测等优点,成为了重金属检测领域的研究热点。本文综述了常见电化学检测方法的检测原理和发展现状,通过引入线性范围、检出限和回收率等参数,分别对电位分析法、电位溶出法和伏安法的检测效果进行阐述,讨论了各种方法的优缺点,并指出以后的研究方向,以期为电化学传感器的应用提供基础。
中图分类号:
刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475.
Ming-Yan LIU, Xiu-Ding SHI, Tian-Guo LI, Jing WANG. Research Progress in Detection of Heavy Metal Ions by Electrochemical Analysis[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475.
Ion-Selective Electrode | Ionophore | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | Ref. |
---|---|---|---|---|
Calcium Ion Selective Electrode | 1,1,1-Tris(N-methyl-N-phenylaminoearbonylmethoxymethy1)propane (TMPP) | 5.0×10-5~5.0×10-2 | 2.3×10-5 | [ |
Calix[ | 1.0×10-4~1.0×10-1 | [ | ||
N,N,N′,N′-Tetracyclohexyl-3-oxapentanediamide ligand (ETH 129) | 1.0×10-5~1.0×10-2 | 1.0×10-5 | [ | |
Lead Ion Selective Electrode | III N,N,N′,Ν′- Tetradodecyl-3,6-dioxaoctandithioamide (ETH5435) | 1.0×10-7~1.0×10-4 | 5.0×10-8 | [ |
Polyaminoanthraquinone (PAAQ) | 2.5×10-6~1.0×10-1 | 7.76×10-7 | [ | |
Polyphenylenediamine | 3.16×10-6~3.16×10-2 | 6.31×10-7 | [ | |
Copper Ion Selective Electrode | o-Xylylenebis(N,N-diisobutyldithiocarbamate) | 1.0×10-1~1.0×10-6 | 4.9×10-7 | [ |
2, 2′-[1,9 Nonanediyl bis (nitriloethylidyne)]-bis- (1-naphthol) | 1.0×10-6~5.0×10-3 | 8.0×10-7 | [ | |
N-Hydroxysuccinimide (NHS) and succinimide (Succ) | 1.0×10-2~1.0×10-6 | 4.4×10-6 | [ |
表1 离子选择电极法用于重金属离子检测[24-32]
Table 1 Determination of heavy metal ions by ion selective electrode method[24-32]
Ion-Selective Electrode | Ionophore | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | Ref. |
---|---|---|---|---|
Calcium Ion Selective Electrode | 1,1,1-Tris(N-methyl-N-phenylaminoearbonylmethoxymethy1)propane (TMPP) | 5.0×10-5~5.0×10-2 | 2.3×10-5 | [ |
Calix[ | 1.0×10-4~1.0×10-1 | [ | ||
N,N,N′,N′-Tetracyclohexyl-3-oxapentanediamide ligand (ETH 129) | 1.0×10-5~1.0×10-2 | 1.0×10-5 | [ | |
Lead Ion Selective Electrode | III N,N,N′,Ν′- Tetradodecyl-3,6-dioxaoctandithioamide (ETH5435) | 1.0×10-7~1.0×10-4 | 5.0×10-8 | [ |
Polyaminoanthraquinone (PAAQ) | 2.5×10-6~1.0×10-1 | 7.76×10-7 | [ | |
Polyphenylenediamine | 3.16×10-6~3.16×10-2 | 6.31×10-7 | [ | |
Copper Ion Selective Electrode | o-Xylylenebis(N,N-diisobutyldithiocarbamate) | 1.0×10-1~1.0×10-6 | 4.9×10-7 | [ |
2, 2′-[1,9 Nonanediyl bis (nitriloethylidyne)]-bis- (1-naphthol) | 1.0×10-6~5.0×10-3 | 8.0×10-7 | [ | |
N-Hydroxysuccinimide (NHS) and succinimide (Succ) | 1.0×10-2~1.0×10-6 | 4.4×10-6 | [ |
Electrode | Linear range/ (mol·L-1) | Limit of detection/(mol·L-1) | RSD/% | Recovery/% | Analysis object | Ref. |
---|---|---|---|---|---|---|
Fullerene-chitosan | Hg(II),1.0×10-4~6.0×10-6 Cu(II),5.0×10-4~6.0×10-6 Pb(II),5.0×10-3~6.0×10-6 Cd(II),5.0×10-5~9.0×10-6 | Hg(Ⅱ),3.0×10-9 Cu(Ⅱ),1.4×10-8 Pb(Ⅱ),1.0×10-9 Cd(Ⅱ),2.1×10-8 | Hg(Ⅱ),3.1 Cu(Ⅱ),2.5 Pb(Ⅱ),5.7 Cd(Ⅱ),1.9 | 92.2~117.2 | Hg(Ⅱ) Cu(Ⅱ) Pb(Ⅱ) Cd(Ⅱ) | [ |
1,10-Phenanthroline-5,6-dione | 2.4×10-7~6.0×10-9 | 3.0×10-10 | 2.10 | 99.3 | Cd(Ⅱ) | [ |
Carbon electrode was modified by chitosan and cysteine | 2.0×10-7~2.0×10-9 | 7.32×10-7 | 5.87 | As(Ⅲ) | [ | |
Reduced graphene oxide and Goldnanoparticles (rGO/AuNPs CFMEs) | 0~1.0×10-6 | 2.4×10-9 | 2.22 | Cu(Ⅱ) | [ | |
Nafion-modified glassy carbon electrode | 9.2×10-7~9.2×10-8 | 4.6×10-8 | 7.1 | 90.0~109.0 | Ag(Ⅰ) | [ |
Hg-Plated | Cd(Ⅱ),3.5×10-7~8.9×10-10 Pb(Ⅱ),3.9×10-7~4.8×10-10 Cu(Ⅱ),0~1.6×10-6 | Cd(Ⅱ),5.3×10-10 Pb(Ⅱ),1.4×10-9 Cu(Ⅱ),1.6×10-9 | Cd(Ⅱ),4.0 Pb(Ⅱ),2.9 Cu(Ⅱ),2.7 | Cd(Ⅱ),99.57 Pb(Ⅱ),101.30 Cu(Ⅱ),98.00 | Cd(Ⅱ) Pb(Ⅱ) Cu(Ⅱ) | [ |
In-situ Bismuth-modified Boron doped diamond electrode | 4.6×10-6~4.8×10-8 | Zn(Ⅱ),8.6×10-9 Cd(Ⅱ),2.9×10-9 Pb(Ⅱ),3.6×10-9 | 92.0~114.0 | Zn(Ⅱ) Cd(Ⅱ) Pb(Ⅱ) | [ | |
Bi2O3-graphene material | Pb(Ⅱ),9.6×10-7~4.8×10-8 Cd(Ⅱ),1.8×10-6~2.2×10-7 | Pb(Ⅱ),9.6×10-11 Cd(Ⅱ),2.2×10-9 | Pb(Ⅱ),4.3 Cd(Ⅱ),4.7 | Pb(Ⅱ) Cd(Ⅱ) | [ |
表2 阳极溶出伏安法用于重金属离子检测[49-56]
Table 2 Determination of heavy metal ions by anodic stripping voltammetry[49-56]
Electrode | Linear range/ (mol·L-1) | Limit of detection/(mol·L-1) | RSD/% | Recovery/% | Analysis object | Ref. |
---|---|---|---|---|---|---|
Fullerene-chitosan | Hg(II),1.0×10-4~6.0×10-6 Cu(II),5.0×10-4~6.0×10-6 Pb(II),5.0×10-3~6.0×10-6 Cd(II),5.0×10-5~9.0×10-6 | Hg(Ⅱ),3.0×10-9 Cu(Ⅱ),1.4×10-8 Pb(Ⅱ),1.0×10-9 Cd(Ⅱ),2.1×10-8 | Hg(Ⅱ),3.1 Cu(Ⅱ),2.5 Pb(Ⅱ),5.7 Cd(Ⅱ),1.9 | 92.2~117.2 | Hg(Ⅱ) Cu(Ⅱ) Pb(Ⅱ) Cd(Ⅱ) | [ |
1,10-Phenanthroline-5,6-dione | 2.4×10-7~6.0×10-9 | 3.0×10-10 | 2.10 | 99.3 | Cd(Ⅱ) | [ |
Carbon electrode was modified by chitosan and cysteine | 2.0×10-7~2.0×10-9 | 7.32×10-7 | 5.87 | As(Ⅲ) | [ | |
Reduced graphene oxide and Goldnanoparticles (rGO/AuNPs CFMEs) | 0~1.0×10-6 | 2.4×10-9 | 2.22 | Cu(Ⅱ) | [ | |
Nafion-modified glassy carbon electrode | 9.2×10-7~9.2×10-8 | 4.6×10-8 | 7.1 | 90.0~109.0 | Ag(Ⅰ) | [ |
Hg-Plated | Cd(Ⅱ),3.5×10-7~8.9×10-10 Pb(Ⅱ),3.9×10-7~4.8×10-10 Cu(Ⅱ),0~1.6×10-6 | Cd(Ⅱ),5.3×10-10 Pb(Ⅱ),1.4×10-9 Cu(Ⅱ),1.6×10-9 | Cd(Ⅱ),4.0 Pb(Ⅱ),2.9 Cu(Ⅱ),2.7 | Cd(Ⅱ),99.57 Pb(Ⅱ),101.30 Cu(Ⅱ),98.00 | Cd(Ⅱ) Pb(Ⅱ) Cu(Ⅱ) | [ |
In-situ Bismuth-modified Boron doped diamond electrode | 4.6×10-6~4.8×10-8 | Zn(Ⅱ),8.6×10-9 Cd(Ⅱ),2.9×10-9 Pb(Ⅱ),3.6×10-9 | 92.0~114.0 | Zn(Ⅱ) Cd(Ⅱ) Pb(Ⅱ) | [ | |
Bi2O3-graphene material | Pb(Ⅱ),9.6×10-7~4.8×10-8 Cd(Ⅱ),1.8×10-6~2.2×10-7 | Pb(Ⅱ),9.6×10-11 Cd(Ⅱ),2.2×10-9 | Pb(Ⅱ),4.3 Cd(Ⅱ),4.7 | Pb(Ⅱ) Cd(Ⅱ) | [ |
Ionophore | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | RSD/% | Recovery/% | Analysis object | Ref. |
---|---|---|---|---|---|---|
Chitosan coated magnetite nanoparticle modified carbon paste electrode | 5.8×10-9~1.9×10-10 | 1.2×10-10 | 11.4 | 87~110 | Cr(Ⅵ) | [ |
Gold, microwire electrode | 1×10-7~1×10-9 | 5.0×10-10 | As(Ⅲ) | [ | ||
Electrode was modified by nanographite and plastic (polylactic acid) | 9.1×10-9~2.7×10-6 | 1.6×10-9 | 4.9 | 96~105 | Mn(Ⅱ) | [ |
Carbon nanotude paste electrode | 8.0×10-9~3.0×10-7 | 3.5×10-9 | 2.5 | 96.7~104 | NI(Ⅲ) | [ |
Iron oxide nanostructured (ION) | 1.0×10-6~8.0×10-6 | 3.0×10-9 | 3.6 | 102~119 | Cu(Ⅱ) | [ |
表3 阴极溶出伏安法用于重金属离子检测[60-64]
Table 3 Determination of heavy metal ions by cathodic stripping voltammetry[60-64]
Ionophore | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | RSD/% | Recovery/% | Analysis object | Ref. |
---|---|---|---|---|---|---|
Chitosan coated magnetite nanoparticle modified carbon paste electrode | 5.8×10-9~1.9×10-10 | 1.2×10-10 | 11.4 | 87~110 | Cr(Ⅵ) | [ |
Gold, microwire electrode | 1×10-7~1×10-9 | 5.0×10-10 | As(Ⅲ) | [ | ||
Electrode was modified by nanographite and plastic (polylactic acid) | 9.1×10-9~2.7×10-6 | 1.6×10-9 | 4.9 | 96~105 | Mn(Ⅱ) | [ |
Carbon nanotude paste electrode | 8.0×10-9~3.0×10-7 | 3.5×10-9 | 2.5 | 96.7~104 | NI(Ⅲ) | [ |
Iron oxide nanostructured (ION) | 1.0×10-6~8.0×10-6 | 3.0×10-9 | 3.6 | 102~119 | Cu(Ⅱ) | [ |
1 | NUNES E W, SILVA M K L, CESARINO I. Evaluation of a reduced grap hene oxide-Sb nanoparticles electrochemical sensor for the detection of cadmium and lead in chamomile tea[J]. Chemosensors, 2020, 8(3): 53. |
2 | ISVORAN A, ROMAN D L, DASCALU D, et al. Human health effects of heavy metal pollution in the cross-border area of Romania and Serbia: a review[J]. Ecol Chem Eng S, 2021, 28(3): 365-388. |
3 | YANG Z H, REN J, DU M Y, et al. Enhanced laser-induced breakdown spectroscopy for heavy metal detection in agriculture: a review[J]. Sensors, 2022, 22(15): 5679. |
4 | 石秀顶, 杨黎, 陈桂杰, 等. 咖啡初加工废水特征及生化处理工艺设计与调试[J]. 给水排水, 2022, 58(6): 76-83. |
SHI X D, YANG L, CHEN G J, et al. Characteristics of coffee primary processing wastewater and biochemical treatment process design and debugging[J]. Water Wastewater Eng, 2022, 58(6): 76-83. | |
5 | WANG L Y, PENG X L, FU H J, et al. Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food[J]. Biosens Bioelectron, 2020, 147: 111777. |
6 | BOTWE B O. Heavy metal concentrations in five fish species from the Gulf of Guinea and their human health implications[J]. Reg Stud Mar Sci, 2021, 44: 101763. |
7 | ZHANG L, PENG D, LIANG R P, et al. Graphene-based optical nanosensors for detection of heavy metal ions[J]. TrAC, Trends Anal Chem, 2018, 102: 280-290. |
8 | 薛晨怡, 刘林佳, 王婷, 等. 荧光法检测重金属铅离子的研究进展[J]. 应用化学, 2022, 39(7): 1039-1051. |
XUE C Y, LIU L J, WANG T, et al. Research progress on fluorescence detection of heavy metal lead ion[J]. Chin J Appl Chem, 2022, 39(7): 1039-1051. | |
9 | 石秀顶, 王静, 蒋明, 等. 微生物电解池去除废水中重金属的性能特征与机制[J]. 工业水处理, 2022, 42(5): 26-33. |
SHI X D, WANG J, JIANG M, et al. Performance characteristics and mechanism of removal of heavymetal ions from wastewater by microbial electrolytic cell[J]. Ind Water Treat, 2022, 42(5): 26-33. | |
10 | TUTULEA M D, CRETESCU I, SIBIESCU D, et al. Electrochemical sensors for heavy metal ions detection from aqueous solutions[J]. Environ Eng Manage J, 2012, 11(2): 463-470. |
11 | 吴倩, 毕洪梅, 韩晓军. 重金属离子的电化学检测研究进展[J]. 分析化学, 2021, 49(3): 330-340. |
WU Q, BI H M, HAN X J. Research progress of electrochemical detection of heavy metal ions[J]. Chin J Anal Chem, 2021, 49(3): 330-340. | |
12 | 王雅琳. 离子选择电极在化工分析检测中的应用[J]. 化工管理, 2022(2): 25-28. |
WANG Y L. Application of ion selective electrode in chemical analysis and detection[J]. Chem Manage, 2022(2): 25-28. | |
13 | 李新贵, 蔚文慧, 黄美荣. 钙离子选择电极的发展现状及应用[J]. 化学传感器, 2016, 36(4): 15-24. |
LI X G, WEI W H, HUANG M R. Progress and applications of calcium ion-selective electrode[J]. Chem Sens, 2016, 36(4): 15-24. | |
14 | 李文卓, 黄方伦, 王健龙. 以硫代乙酰胺/凹凸棒石复合物为载体的钙离子选择性电极[J]. 化学学报, 2012, 70(18): 1963-1968. |
LI W Z, HUANG F L, WANG J L. A new calcium electrode based on the composite thio-acetamide/attapulgite as ionophore[J]. Acta Chim Sin, 2012, 70(18): 1963-1968. | |
15 | 黄美荣, 李新贵. 铅离子选择电极优异响应性大环化合物载体[J]. 科学通报, 2008, 53(15): 1745-1754. |
HUANG M R, LI X G. Macrocyclic compound as ionophores in lead(Ⅱ) ion-selective electrodes with excellent response characteristics[J]. Chin Sci Bull, 2008, 53(15): 1745-1754. | |
16 | 居红芳, 陈朗星, 何锡文, 等. 新型杯芳烃为载体的铅离子选择电极[J]. 分析化学, 2001, 29(10): 1121-1124. |
JU H F, CHEN L X, HE X W, et al. Lead ion selective electrode based on novel calix[4]arene derivaitve[J]. Chin J Anal Chem, 2001, 29(10): 1121-1124. | |
17 | 魏小平, 林剑平, 李建平. 掺杂2,9-二甲基-4,7-二苯基-1,10-邻二氮菲的石蜡碳糊铜离子选择性电极的研究[J]. 分析试验室, 2006, 25(7): 90-93. |
WEI X P, LIN J P, LIN J P. Copper(Ⅰ)-selective electrode based on carbon paste doped with bathocuproin[J]. Chin J Anal Lab, 2006, 25(7): 90-93. | |
18 | ROCHELEAU M J, PURDY W C. Investigation of materials for making a carbon-support zinc-selective electrode[J]. Talanta, 1990, 37(3): 307-311. |
19 | 杨春海, 黄文胜, 张升辉. 钠型蒙脱石修饰碳糊电极测定微量的铜离子[J]. 分析科学学报, 2003, 19(3): 3. |
YANG C H, HUANG W S, ZHANG S H. Voltammetric determination of Cu(Ⅱ) using sodium montmorillonite modified carbon paste electrode[J]. J Anal Sci, 2003, 19(3): 3. | |
20 | 魏小平, 李建平, 戴达勇. 吡咯烷二硫代氨基甲酸盐碳糊修饰电极的研究[J]. 理化检验(化学分册), 1999, 35(4): 181-182. |
WEI X P, LI J P, DAI D Y. Physical testing and chemical analysis partb chemical analgsis[J]. Phys Test Chem Anal (Part B: Chem Anal), 1999, 35(4): 181-182. | |
21 | MOHAMED G G, EL-SHAHAT M F, AL-SABAGH A M, et al. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations[J]. Analyst, 2011, 136(7): 1488-1495. |
22 | SETHI B, CHANDRA S, KUMAR S, et al. Crown ether-dendrimer based potentiometric Na+ sensor electrode[J]. J Electroanal Chem, 2011, 651(2): 185-190. |
23 | CHANDRA S, TOMAR P K, KUMAR A, et al. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier[J]. J Saudi Chem Soc, 2016, 20(S1): S293-S299. |
24 | 卢会杰, 高巧英, 颜振宁, 等. 以1,1,1-三(N-甲基-N-苯基氨基羰甲氧甲基)丙烷为载体的钙离子选择电极[J]. 分析测试学报, 2003, 22(1): 9-11. |
LU H J, GAO Q Y, YAN Z N, et al. Caleium ion selective electrode with 1,1,1-tris(N-methy1-N-phenylaminoearbonylmethoxymethy1)propane as ionophore[J]. J Instrumental Anal, 2003, 22(1): 9-11. | |
25 | MCKITTRICK T, DIAMOND D, MARRS D J, et al. Calcium-selective electrode based on a calix[4]arene tetraphosphine oxide[J]. Talanta, 1996, 43(7): 1145-1148, |
26 | PETER W A, TELIS D, HIBBERT D B. A photo-cured coated-wire calcium ion selective electrode for use in flow injection potentiometry[J]. Talanta, 1997, 44(8): 1397-1405, |
27 | FOUSKAK M, CHANIOTAKIS N A. Thick membrane. solid contact ion selective electrode for the detection of lead at picomolar levels[J]. Anal Chem, 2005, 77(6): 1780-1784. |
28 | LI X G, MA X L, HUANG M R. Lead(Ⅱ) ion-selective electrode based on polyaminoanthraquinone particles with intrinsic conductivity[J]. Talanta, 2009, 78(2): 498-505. |
29 | HUANG M R, RAO X W, LI X G, et al. Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores[J]. Talanta, 2011, 85(3): 1575-1584. |
30 | BIRINCI A, EREN H, COLDUR F, et al. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode[J]. J Food Drug Anal, 2016, 24(3): 485-492. |
31 | SADEGHI S, VARDINI M T, NAEIMI H. Copper(Ⅱ) ion selective liquid membrane electrode based on new schiff base carrier[J]. Ann Chim(Rome Italy) Di Chim, 2006, 96(1): 65-74. |
32 | TUTULEA-ANASTASIU M D, WILSON D, DELVALLE M, et al. A solid-contact ion selective electrode for copper(Ⅱ) using a succinimide derivative as ionophore[J]. Sensors, 2013, 13(4): 4367-4377. |
33 | 周宝宣, 袁琦. 土壤重金属检测技术研究现状及发展趋势[J]. 应用化工, 2015, 44(1): 131-138, 145. |
ZHOU B X, YUAN Q. Current situation and development trend of soilheavy metals detection[J]. Appl Chem Ind, 2015, 44(1): 131-138, 145. | |
34 | TARLEY C R T, SANTOS V S, BAETA B E L, et al. Simultaneous zetermination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode[J]. J Hazard Mater, 2009, 169(1/2/3): 256-262. |
35 | SUTUROVIC Z J, KRAVIC S Z, STOJIANOVIC Z S, et al. Potentiometric stripping analysis of cadmium and lead with constant inverse current in the analytical step using an open tubular mercury-coated glassy carbon electrode[J]. J Anal Methods Chem, 2019, 2019: 1-9. |
36 | SUTUROVIC Z, KRAVIC S, MILANOVIC S, et al. Determination of heavy metals in milk and fermented milk products by potentiometric stripping analysis with constant inverse current in the analytical step[J]. Food Chem, 2014, 155: 120-125. |
37 | 魏小平, 梁青梅, 李建平. 锑电极电位溶出法测定锌、镉、铅[J]. 中国无机分析化学, 2011, 1(4): 19-23. |
WEI X P, LIANG Q M, LI J P. Determination of lead,cadmium,zinc using antimony electrode by potentiometric stripping anaiysis[J]. Chin J Inorg Anal Chem, 2011, 1(4): 19-23. | |
38 | HARVEY, D. Analytical chemistry 2.0[M]. Anal Bioanal Chem, Heidelberg, 2011, 399: 149-152. |
39 | 胡成国, 华雨彤. 线性扫描伏安法的基本原理与伏安图解析[J]. 大学化学, 2021, 36(4): 126-132. |
HU C G, HUA Y T. Principles of linear sweep voltammetry and interpretations of voltammograms[J]. Univ Chem, 2021, 36(4): 126-132. | |
40 | KHUN N W, LIU E. Linear sweep anodic stripping voltammetry of heavy metals from nitrogen doped tetrahedral amorphous carbon thin films[J]. Electrochim Acta, 2009, 54(10): 2890-2898 |
41 | 邓欢, 许静, 郭颖颖, 等. 土壤产电信号与线性扫描伏安法联用模拟监测湿地铜污染[J]. 土壤, 2018, 50(5): 942-948. |
DENG H, XU J, GUO Y Y, et al. Combining use of soil generated electrical signals and linear sweep voltammetry to stimulate copper pollution monitoring in wetland[J]. Soils, 2018, 50(5): 942-948. | |
42 | 何为, 唐先忠, 王守绪, 等. 线性扫描伏安法与循环伏安法实验技术[J]. 实验科学与技术, 2005(S1): 134-136. |
HE W, TANG X Z, WANG S X, et al. Experimental techniques of linear scan voltammetry and cylic voltammetry and cylic voltammetry[J]. Exp Sci Technol, 2005(S1): 134-136. | |
43 | 陈红任, 孙和鑫, 朱春城. 氧化石墨烯修饰碳糊电极循环伏安法测定铜离子[J]. 人工晶体学报, 2016, 45(11): 2634-2638. |
CHEN H R, SUN H X, ZHU C C. Determination of copper ion by cyclic voltammetry with graphene oxide modified carbon electrod[J]. J Synth Cryst, 2016, 45(11): 2634-2638. | |
44 | WANG Q, ZHOU H Q, HAO T T, et al. A fully integrated fast scan cyclic voltammetry electrochemical method: improvements in reaction kinetics and signal stability for specific Ag(Ⅰ) and Hg(Ⅱ) analysis[J]. J Electroanal Chem, 2022, 910: 116208. |
45 | ARAVIND N, SANGARANARAYANAN M V. Differential pulse voltammetry as an alternate technique for over oxidation of polymers: application of electrochemically synthesized over oxidized poly (Alizarin Red S) modified disposable pencil graphite electrodes for simultaneous detection of hydroquinone and catechol[J]. J Electroanal Chem, 2017, 789: 148-159. |
46 | HAARRIS M D, TOMBELLI G, MARAZZA G, et al. 8-affibodies as an alternative to antibodies in biosensors for cancer markers[M]. Biosens Med Appl, Sawston, 2012: 217-232. |
47 | AZIZ S F N A, ZAWAWI R, AHMAD S A A. An electrochemical sensing platform for the detection of lead ions based on dicarboxyl-calix[4]arene [J]. Electroanalysis, 2018, 30(3): 533-542. |
48 | ZHANG Y X, LI C, SU Y C, et al. Simultaneous detection of trace Cd(Ⅱ) and Pb(Ⅱ) by differential pulse anodic stripping voltammetry using a bismuth oxycarbide/nafion electrode[J]. Inorg Chem Commun, 2020, 147: 545-554. |
49 | SUN M X, LI Z H, WU S, et al. Simultaneous detection of Pb2+, Cu2+ and Hg2+ by differential pulse voltammetry at an indium tin oxide glass electrode modified by hydroxyapatite[J]. Electrochim Acta, 2018, 238: 1223-1230 |
50 | MEI C J, AHMAD S A A. A review on the determination heavy metals ions using calixarene-based electrochemical sensors[J]. Arab J Chem, 2021, 14(9): 103303. |
51 | 杨瑞, 康天放, 鲁理平, 等. 基于DNA酶/AuNPs-GO传感器方波伏安法高灵敏检测Pb2+[J]. 分析化学, 2021, 49(2): 309-317. |
YANG R, KANG T F, LU L P, et al. Highly sensitive detection of Pb2+ based on DNAzyme/AuN Ps-GO sensor by square-wave voltammetry[J]. Chin J Anal Chem, 2021, 49(2): 309-317. | |
52 | ELMHAMMEDI M A, ACHAK M, HBID M, et al. Electrochemical determination of cadmium(Ⅱ) at platinum electrode modified with kaolin by square wave voltammetry[J]. J Hazard Mater, 2009, 170(2/3): 590-594 |
53 | 刘宁, 赵国, 刘刚. 土壤铅和镉溶出伏安法检测中影响因素及其削弱方法研究进展[J]. 农业工程学报, 2021, 37(18): 232-243. |
LIU N, ZHAO G, LIU G. Research advances of influencing factors and weakening methods to determine Pb2+ and Cd2+ in soils by anodic stripping voltammetry[J]. Trans Chin Soc Agric Eng, 2021, 37(18): 232-243. | |
54 | BAHINTING S E D, ROLLON A P, GARCIA-SEGURA S, et al. Bismuth film-coated gold ultramicroelectrode array for simultaneous quantification of Pb(Ⅱ) and Cd(Ⅱ) by square wave anodic stripping voltammetry[J]. Sensors, 2021, 21(5): 1811. |
55 | ZHU X X, TONG J H, BIAN C, et al. The polypyrrole/multiwalled carbon nanotube modified Au microelectrode for sensitive electrochemical detection of trace levels of Pb2+[J]. Micromachines, 2017, 8(3): 86. |
56 | 孙萍, 晏明国, 张鸿泽, 等. 差分脉冲阳极溶出伏安法检测重金属离子[J]. 电子科技大学学报, 2017, 46(5): 784-789. |
SUN P, YAN M G, ZHANG H Z, et al. Detection of heavy metal ions by differential pulse stripping voltammetry[J]. J Univ Electron Sci Technol China, 2017, 46(5): 784-789. | |
57 | WU Y, LI N B, LUO H Q. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid) film electrode[J]. Sens Actuators B: chem, 2008, 133(2): 677-681. |
58 | GODE C, YOLA M L, YILMAZ A, et al. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(Ⅲ), Cd(Ⅱ) and Pb(Ⅱ) ions[J]. J Colloid Interface Sci, 2017, 508: 525-531. |
59 | PIZARRO J, SEGURA R, TAPIA D, et al. Inexpensive and green electrochemical sensor for the determination of Cd(Ⅱ) and Pb(Ⅱ) by square wave anodic stripping voltammetry in bivalve mollusks[J]. Food Chem, 2020, 321: 126682. |
60 | HAN X J, MENG Z C, ZHANG H F, et al. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(Ⅱ), Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) in foodstuff[J]. Microchim Acta, 2018, 185: 274. |
61 | 匡云飞, 邹建陵, 马利芝, 等. 1,10-邻菲啰啉-5,6-二酮修饰碳糊电极测定水中镉[J]. 分析化学, 2008, 37(1): 103-106. |
KUANG Y F, ZHOU J L, MA L Z, et al. Determination of trace Cd2+ in water sample using 1,10-phenanthroline-5,6-dione modified carbon paste electrode[J]. Chin J Anal Chem, 2008, 37(1): 103-106. | |
62 | SAHA S, SARKAR P. Differential pulse anodic stripping voltammetry for detection of As(Ⅲ) by chitosan-Fe(OH)(3) modified glassy carbon electrode: a new approach towards speciation of arsenic[J]. Talanta, 2016, 158: 235-245. |
63 | 蔡良圣, 林君, 辛青, 等. 电化学微传感器检测水中痕量铜离子[J]. 中国环境科学, 2020, 40(8): 3394-3400. |
CAI L S, LIN J, XIN Q, et al. The detection of copper ion in water with electrochemical microsensors[J]. China Environ Sci, 2020, 40(8): 3394-3400. | |
64 | 朱海巧, 邵少雄, 罗中艳, 等. 脉冲阳极溶出伏安法测定钚中痕量银[J]. 原子能科学技术, 2015, 49(1): 34-39. |
ZHU H Q, SHAO S X, LUO Z Y, et al. Determination of trace silver in plutonium by pulse anodic stripping voltammetry[J]. At Energy Sci Technol, 2015, 49(1): 34-39. | |
65 | 朱浩嘉, 潘道东, 顾愿愿, 等. 同位镀汞阳极溶出伏安法测定牛奶中镉、铅、铜[J]. 食品科学, 2014, 35(8): 121-124. |
ZHU H J, HAO D D, GU Y Y, et al. Determination of cadmium, lead and copper in milk by Hg-plated anodic stripping voltammetry[J]. Food Sci, 2014, 35(8): 121-124. | |
66 | 高成耀, 佟建华, 边超, 等. 锌、镉、铅离子在原位铋修饰掺硼金刚石薄膜电极上的传感分析[J]. 分析化学, 2018, 46(2): 217-224. |
GAO C Y, DONG J H, BIAN C, et al. Determination of trace Zn(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) metal ions using in-situ bismuth-modified boron doped diamond electrode[J]. Chin J Anal Chem, 2018, 46(2): 217-224. | |
67 | 崔闻宇, 孙言春, 吕江维, 等. 在三氧化二铋-石墨烯修饰电极上采用阳极溶出伏安法检测铅和镉[J]. 分析化学, 2018, 46(11): 1748-1754. |
CUI W Y, SUN Y C, LV J W, et al. Bi2O3@graphene-modified glassy carbon electrode for detection of lead and cadmium by anodic stripping voltammetry[J]. Chin J Anal Chem, 2018, 46(2): 217-224. | |
68 | 王中荣, 魏福祥, 刘亚芹, 等. 电分析化学法在重金属离子检测中的应用[J]. 河北工业科技, 2015, 32(1): 55-63. |
WANG Z R, WEI F X, LIU Y Q, et al. Application of electroanalytical chemistry methods in detction of heavy metal ions[J]. Hebei J Ind Sci Technol, 2015, 32(1): 55-63. | |
69 | ABBASI S, KHODARAHMIYAN K, ABBASI F. Simultaneous determination of ultra trace amounts of lead and cadmium in food samples by adsorptive stripping voltammetry[J]. Food Chem, 2011, 128(1): 254-257. |
70 | GRABARCZYK M, WASAG J. Determination of trace amounts of Ga(Ⅲ) by adsorptive stripping voltammetry with in situ plated bismuth film electrode[J]. Talanta, 2015, 144: 1091-1095. |
71 | SANCHAYANUKUN P, MUNCHAROEN S. Chitosan coated magnetite nanoparticle as a working electrode for determination of Cr(Ⅵ) using square wave adsorptive cathodic stripping voltammetry[J]. Talanta, 2020, 217: 121027. |
72 | GIBBON-WALSH K, SALAUN P, VAN DEN BERG C M G, et al. Arsenic speciation in natural waters by cathodic stripping voltammetry[J]. Anal Chim Acta, 2010, 662(1): 1-8. |
73 | ROCHA D P, FOSTER C W, MUNOZ R A A, et al. Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms[J]. Analyst, 2020, 145(9): 3424-3430. |
74 | 郑莉. 碳纳米管糊电极阴极溶出伏安法测定油品中镍含量[J]. 石油学报(石油加工), 2012, 28(3): 487-493. |
ZHENG L. Determination of nickel in oil product by novel cathodic stripping voltammetry with carbon nanotude paste electrode[J]. Acta Petrol Sin (Pet Process Sect), 2012, 28(3): 487-493. | |
75 | SANTOS J G M, SOUZA J R, LETTI C J, et al. Iron oxide nanostructured electrodes for detection of copper(Ⅱ) ions[J]. J Nanosci Nanotechnol, 2014, 14(9): 6614-6623. |
76 | 张梦娇, 冯朝岭, 刘小标, 等. 重金属离子检测方法研究进展[J]. 科学技术与工程, 2020, 20(9): 3404-3413. |
ZHANG M J, FENG C L, LIU X B, et al. Research process on detection method for heavy metal ions[J]. Sci Technol Eng, 2020, 20(9): 3404-3413. | |
77 | BONYEMPELLI G, DOSSI N, TONIOLO R. Polarography/Voltammetry[M]. Encyclopedia Anal Sci (3rd Ed), Amsterdam, 2019: 218-229. |
78 | PURI B K, ATAMJYOT, LAL K, et al. Differential pulse polarographic determination of uranium(Ⅵ) in complex materials after adsorption of its trifluoroethylxanthate cetyltrimethylammonium ion-associated complex on naphthalene adsorbent[J]. Anal Sci, 2002, 18(4): 427-432. |
79 | TAHER M A. Differential pulse polarography determination of indium after column preconcentration with [1-(2-pyridylazo)-2-naphthol]-naphthalene adsorbent or its complex on microcrystalline naphthalene[J]. Talanta, 2000, 52(2): 301-309. |
80 | ABADI M, ZAMANI A, PARIZANGANEH A, et al. Heavy metals and arsenic content in water along the southern caspian coasts in iran[J]. Environ Sci Pollut Res, 2018, 25: 23725-23735. |
81 | ALMEIDA E V, LUGON M D, DA SILVAil J L, et al. Selective polarographic determination of stannous ion in technetium radiopharmaceutical cold kits[J]. J Nucl Med Technol, 2011, 39(4): 307-311. |
82 | 朱新宇, 王小伟. 电分析化学技术在元素硫检测中的应用和发展[J]. 分析仪器, 2016(3): 1-5. |
ZHU X Y, WANG X W. Applications and developments of electroanalytical chemistry in measurement of element sulfur[J]. Anal Instrum, 2016(3): 1-5. | |
83 | 邹洪, 王燕军, 马洁, 等. 单扫示波极谱法同时测定钴与镍[J]. 理化检验(化学分册), 2002, 38(3): 109-110, 113. |
ZHOU H, WANG Y J, MA J, et al. Simultaneous determination of cobalt and nickel by single-scanning oscillopolarography[J]. Phys Test Chem Anal (Part B: Chem Anal), 2002, 38(3): 109-110, 113. | |
84 | 金华丽, 徐卫河, 孙玉芳. 食品中微量铅的电位溶出法与示波极谱法测定的比较[J]. 食品科学, 2009, 30(24): 307-310. |
JIN H L, XU W H, SUN Y F. Comparison of potentiometric stripping analysis and oscillopolarography in determination of trace lead in foodstuff[J]. Food Sci, 2009, 30(24): 307-310. | |
85 | ZHOU Y L, YIN H S, AI S Y. Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: a comprehensive review[J]. Coord Chem Rev, 2021, 447(15): 214156 |
86 | HU J Y, LI Z, ZHAI C Y, et al. Photo-assisted simultaneous electrochemical detection of multiple heavy metal ions with a metal-free carbon black anchored graphitic carbon nitride sensor[J]. Anal Chim Acta, 2021, 1183: 338951. |
87 | LU M D, ZHOU H F, PENG W, et al. Dithiol Self-assembled monolayer based electrochemical surface plasmon resonance optical fiber sensor for selective heavy metal ions detection[J]. Anal Chim Acta, 2021, 39(12): 4034-4040. |
88 | LI J R, ZHANG H E, ZHANG N, et al. Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis[J]. Talanta, 2022, 253(1): 124092 |
89 | SAYYAD P W, SONTAKKE K S, FAROOQUI A A, et al. A novel three-dimensional electrochemical Cd(Ⅱ) biosensor based on L-glutathione capped poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/carboxylated multiwall CNT network[J]. J Sci Adv Mater Dev, 2022, 7(4): 100504. |
90 | WANG H, LIU Y, WANG J, et al. Electrochemical impedance biosensor array based on DNAzyme-functionalized single-walled carbon nanotubes using Gaussian process regression for Cu(Ⅱ) and Hg(Ⅱ) determination[J]. Mikrochim Acta, 2020, 187(4): 207. |
[1] | 周锐, 张自品. 生物样品中小檗碱的电化学分析新方法[J]. 应用化学, 2023, 40(4): 518-526. |
[2] | 秦丽, 尤晓亭, 唐录华, 李建文, 张寅, 高文惠, 韩俊华. 基于纳米材料修饰的碱性嫩黄O印迹传感器的制备及其应用[J]. 应用化学, 2022, 39(12): 1880-1890. |
[3] | 王学亮, 王朝霞, 汪涛, 戴晓辉. 以还原氧化石墨烯和纳米二氧化锆为DNA探针固定平台电化学测定转基因玉米中特定基因序列[J]. 应用化学, 2019, 36(7): 839-846. |
[4] | 李玉莹, 代鑫, 赫春香. 全固态酸度微电极组的设计与应用[J]. 应用化学, 2019, 36(6): 711-716. |
[5] | 何凤云, 潘兆瑞, 周宏, 刘欢, 俞静, 顾小燕, 唐鹏鹏. 盐酸吡哆辛在聚对氨基苯磺酸修饰电极上的电化学行为与测定[J]. 应用化学, 2015, 32(2): 225-231. |
[6] | 朱长安, 武飞宇, 王雪, 高丽娜, 翁前锋, 石丽, 张成路. 二茂铁基1,3,4-三唑席夫碱衍生物合成及生物活性和电化学性质[J]. 应用化学, 2014, 31(04): 455-461. |
[7] | 刘文涵, 袁荣辉, 滕渊洁, 马淳安. 硫代水杨酸在活化玻碳电极上的电氧化反应机理[J]. 应用化学, 2014, 31(03): 342-347. |
[8] | 王建辉, 郭莉芹, 阮文娟, 朱志昂. Salen型铜(Ⅱ)和镍(Ⅱ)配合物的合成与电化学性质[J]. 应用化学, 2014, 31(03): 303-309. |
[9] | 侯宏英, 刘显茜, Phippe Knauth. 磺化4,4'-联苯二酚的电氧化行为[J]. 应用化学, 2013, 30(04): 444-447. |
[10] | 罗启枚, 王辉宪, 刘登友, 王琳. 石墨烯修饰玻碳电极测定邻苯二酚[J]. 应用化学, 2012, 29(09): 1070-1074. |
[11] | 陈欢, 马伟, 孙登明. 银掺杂聚L-甲硫氨酸修饰电极同时测定对苯二酚和邻苯二酚[J]. 应用化学, 2012, 29(05): 576-584. |
[12] | 刘彩胜, 乔海燕, 古宁宇, 唐纪琳. 聚4-(2-吡啶偶氮)间苯二酚膜修饰玻碳电极测定过氧化氢[J]. 应用化学, 2012, 29(02): 216-221. |
[13] | 许春萱, 熊小琴, 吴莹莹, 马文杰. 聚对氨基苯磺酸/石墨烯修饰玻碳电极伏安法测定痕量汞[J]. 应用化学, 2011, 28(08): 969-973. |
[14] | 王炎英, 彭丽, 詹国庆. 氯化血红素在纳米氧化锌碳糊修饰电极上的电化学行为[J]. 应用化学, 2010, 27(10): 1204-1208. |
[15] | 陈高礼,马伟,孙登明. 银掺杂聚L-天冬氨酸修饰电极的制备及对肾上腺素的测定[J]. 应用化学, 2010, 27(03): 353-357. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||