应用化学 ›› 2022, Vol. 39 ›› Issue (9): 1401-1411.DOI: 10.19894/j.issn.1000-0518.210383
收稿日期:
2021-07-30
接受日期:
2022-04-21
出版日期:
2022-09-01
发布日期:
2022-09-08
通讯作者:
徐长山
基金资助:
Jia-Xin GUO, Yang LIU, Chang-Shan XU(), Xiao-Nan LIU, Liang CHENG
Received:
2021-07-30
Accepted:
2022-04-21
Published:
2022-09-01
Online:
2022-09-08
Contact:
Chang-Shan XU
About author:
csxu@nenu.edu.cnSupported by:
摘要:
MgO NPs在广泛应用的同时会进入到植物的生长环境中,环境的pH值也会影响纳米粒子中金属离子的释放及其与植物间的相互作用。本文选择我国种植面积较大的农作物—小麦(Triticum aestivum L.)为受试对象,使用镁离子选择性微电极研究不同pH值时MgO NPs悬浮液中Mg2+质量浓度的动态变化及其对小麦生长的影响。结果表明,MgO NPs悬浮液中Mg2+质量浓度随时间逐渐增大,48 h后趋于稳定。调节pH值至悬浮液呈酸性促进了Mg2+的释放,对于80 mg/L的MgO NPs悬浮液,pH=6.5时Mg2+质量浓度由未调节pH值时的24.31 mg/L增加到31.47 mg/L。与此同时,小麦对Mg2+的吸收增加,从而在一定程度上减轻了MgO NPs对小麦生长的抑制作用。
中图分类号:
郭佳昕, 刘洋, 徐长山, 刘晓男, 程亮. 不同pH值下MgO NPs悬浮液中Mg2+质量浓度的动态变化及其对小麦生长的影响[J]. 应用化学, 2022, 39(9): 1401-1411.
Jia-Xin GUO, Yang LIU, Chang-Shan XU, Xiao-Nan LIU, Liang CHENG. The Changes of Mg2+ Mass Concentration in MgO NPs Suspension and Its Effects on the Growth of Wheat (Triticum aestivum L.) under Different pH[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1401-1411.
图1 未培养(A)与培养(B) 小麦时不同质量浓度MgO NPs悬浮液48 h内Mg2+质量浓度的变化情况
Fig.1 Changes of Mg2+ mass concentration in (A) uncultivated and (B) cultivated wheat at different mass concentrations of MgO NPs suspensions within 48 h
图2 未培养、培养小麦的条件下,MgO NPs悬浮液为质量浓度20(A)、50(B)、80(C)和100 mg/L(D)时释放Mg2+的质量浓度随时间变化曲线的拟合结果
Fig.2 Fitting curves of Mg2+ release mass concentrations when MgO NPs suspension is 20 (A), 50 (B), 80 (C) and 100 mg/L (D) under uncultivated and cultivated wheat conditions
图3 (A)未培养、培养小麦的条件下,质量浓度为20、50、80和100 mg/L的MgO NPs悬浮液中, Mg2+质量浓度达到饱和时所需时间t0统计图; (B)前4 h 内Mg2+变化速率统计图
Fig.3 (A) Statistical diagram of the time t0 required for the Mg2+ mass concentration to reach saturation in the MgO NPs suspension with the mass concentration of 20, 50, 80 and 100 mg/L under uncultivated and cultivated wheat; (B) Statistic diagram of the mass concentration change rate of Mg2+ in first 4 h
时间 Time/h | 0.5 | 3 | 6 | 15 | 20 | 24 | 40 | 48 | 64 |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 6.8 | 6.8 | 6.8 | 6.6 | 6.5 | 6.4 | 6.3 | 6.2 | 6.0 |
表1 小麦在去离子水中生长时引起的水中pH值变化
Table 1 pH changes in DI water caused by the cultivation of wheat
时间 Time/h | 0.5 | 3 | 6 | 15 | 20 | 24 | 40 | 48 | 64 |
---|---|---|---|---|---|---|---|---|---|
pH值 pH value | 6.8 | 6.8 | 6.8 | 6.6 | 6.5 | 6.4 | 6.3 | 6.2 | 6.0 |
时间 Time/h | 0.5 | 2 | 4 | 6 | 9 | 24 | 32 | 48 | 54 |
---|---|---|---|---|---|---|---|---|---|
pH (未培养小麦 uncultivated wheat) | 10.1 | 10.2 | 10.4 | 10.4 | 10.3 | 10.1 | 10.0 | 9.9 | 9.6 |
pH (培养小麦 cultivated wheat) | 9.5 | 9.1 | 8.6 | 8.3 | 8.2 | 7.9 | 7.7 | 7.6 | 7.7 |
表2 培养与未培养小麦时80 mg/L MgO NPs悬浮液中pH值的变化
Table 2 pH changes in MgO NPs (80 mg/L) suspension with/without wheat cultivated in it
时间 Time/h | 0.5 | 2 | 4 | 6 | 9 | 24 | 32 | 48 | 54 |
---|---|---|---|---|---|---|---|---|---|
pH (未培养小麦 uncultivated wheat) | 10.1 | 10.2 | 10.4 | 10.4 | 10.3 | 10.1 | 10.0 | 9.9 | 9.6 |
pH (培养小麦 cultivated wheat) | 9.5 | 9.1 | 8.6 | 8.3 | 8.2 | 7.9 | 7.7 | 7.6 | 7.7 |
图4 生根阶段的小麦在不同质量浓度的MgO NPs悬浮液处理3 d后的(A)平均净生长量和(B)平均株高; (C)在MgO NPs悬浮液中处理3 d后小麦的形貌图(从左到右处理质量浓度依次为0、20、40、50、60、70、80和100 mg/L)
Fig.4 (A) Average net growth and (B) average plant height of wheat germination stage treated with different mass concentrations of MgO NPs suspensions for 3 days; (C) Morphology of wheat treated with MgO NPs suspension for 3 days (The processing mass concentration is 0, 20, 40, 50, 60, 70, 80 and 100 mg/L, from left to right)
图5 MgO NPs悬浮液处理7 d后小麦的平均株高统计图注:插图为小麦株高形貌图(从左到右对应MgO NPs悬浮液浓度分别为0、40、60和80 mg/L)
Fig.5 Statistical diagram of the average plant height of wheat after 7 days of treatment with MgO NPs suspensionNote: The illustration is the physiognomy of wheat plant height (from left to right: 0, 40, 60 and 80 mg/L)
图6 生根阶段小麦在不同质量浓度的Mg2+溶液中处理3 d后根部净生长量的统计图
Fig.6 Statistics of the net growth of the roots of wheat treated in different mass concentrations of Mg2+ solution for 3 days at the rooting stage
图7 未培养(A)与培养(B)小麦时不同pH值下MgO NPs悬浮液48 h内释放的Mg2+质量浓度变化情况
Fig.7 Changes of Mg2+ mass concentration in MgO NPs suspensions at different pH values in uncultivated (A) and cultivated (B) wheat within 48 h
图8 不同pH值下, (A)质量浓度为80 mg/L的MgO NPs悬浮液处理下小麦根部净生长量的统计图; (B)培养3 d后的小麦形貌图
Fig.8 At different pH values, (A) The net growth of wheat roots treated with MgO NPs suspension at a mass concentration of 80 mg/L; (B) wheat morphology after 3 days of cultivation
1 | COMANDELLA D, GOTTARDO S, RIO-ECHEVARRIA I M, et al. Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability[J]. Nanoscale, 2020, 12(7): 4695-4708. |
2 | SCHERZAD A, MEYER T, KLEINSASSER N, et al. Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity short running title: genotoxicity of ZnO NPs[J]. Materials, 2017, 10(12): 1427-1446. |
3 | BEYENE H D, WERKNEH A A, BEZABH H K, et al. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review[J]. Sustainable Mater Technol, 2017, 13: 18-23. |
4 | 章波, 肖文灿, 徐浩, 等. 不同形貌纳米MgO的制备及其应用研究[J]. 化工新型材料, 2017, 45(5): 43-45. |
ZHANG B, XIAO W C, XU H, et al. Research on preparation and application of nanometer magnesium oxide with different morphologies[J]. New Chem Mater, 2017, 45(5): 43-45. | |
5 | CASTILLO I F, DE MATTEIS L, MARQUINA C, et al. Protection of 18th century paper using antimicrobial nano-magnesium oxide[J]. Int Biodeterior Biodegrad, 2019, 141: 79-86. |
6 | OBEID M M, EDREES S J, SHUKUR M M, et al. Synthesis and characterization of pure and cobalt doped magnesium oxide nanoparticles: insight from experimental and theoretical investigation[J]. Superlattices Microstruct, 2018, 122: 124-139. |
7 | GAJENGI A L, SASAKI T, BHANAGE B M, et al. Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application[J]. Adv Powder Technol., 2017, 28(4): 1185-1192. |
8 | MANGALAMPALLI B, DUMALA N, GROVER P. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles[J]. J Environ Sci, 2018, 66(4): 128-140. |
9 | 吴明珠, 何梅琳, 邹山梅, 等. 纳米 MgO 对斜生栅藻的毒性效应及致毒机理[J]. 环境化学, 2015, 34(7): 1259-1267. |
WU M Z, HE M L, ZOU S M, et al. Toxicities and mechanisms of MgO nanoparticles to scenedesmus obliquus[J]. Environ Chem, 2015, 34(7): 1259-1267. | |
10 | 何惠敏, 徐长山, 郑博文, 等. 离子选择性微电极用于原位测量离子扩散系数[J]. 应用化学, 2019, 34(12): 1439-1446. |
HE H M, XU C S, ZHENG B W, et al. An ion-selective microelectrode method for in-situ measurement of the diffusion coeffcients of ions[J]. Chinese J Appl Chem, 2019, 34(12): 1439-1446. | |
11 | GUSTAVSSON J, PLANELL J, ENGEL E. Ion-selective electrodes to monitor osteoblast-like cellular influence on the extracellular concentration of calcium[J]. J Tissue Eng Regen Med, 2013,7(8): 609-620. |
12 | CHURCH J, ARMS S M, PATEL P K, et al. Development and characterization of needle-type ion-selective microsensors for in situ determination of foliar uptake of Zn2+ in citrus plants[J]. Electroanalysis, 2018, 30(4): 626-632. |
13 | MILLER A J, COOKSON S J, SMITH S J, et al. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants[J]. J Exp Bot, 2001, 52(356): 541-549. |
14 | 宋文峰, 王超, 陈荣府, 等. 长期不同施肥下小麦离子吸收对土壤酸化贡献能力的比较[J]. 土壤, 2017, 49(1): 7-12. |
SONG W F, WANG C, CHEN R F, et al. Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization[J]. Soils, 2017, 49(1): 7-12. | |
15 | 刘晓南. MgO纳米粒子抑制镉对大蒜毒性的研究[D]. 长春: 东北师范大学, 2020. |
LIU X N. Study on MgO nanoparticles inhibiting the toxcity of cadmium to garlic[D]. Changchun: Northeast Normal University, 2020. | |
16 | 张欢欢. 玉米根系微环境改变与根离子吸收的关系[D]. 烟台: 鲁东大学, 2014. |
ZHANG H H. Changes in the rhizosphere microenvironment in relation to the ion absorption in maize roots[D]. Yantai: Ludong University, 2014. | |
17 | 李清芳, 辛天蓉, 马成仓, 等. pH值对小麦种子萌发和幼苗生长代谢的影响[J]. 安徽农业科学, 2003, 31(2): 185-187. |
LI Q F, XIN T R, MA C C, et al. Effect of pH value on wheat seed germination and seedlings growth and metabolism[J]. J Anhui Agric Sci, 2003, 31(2): 185-187. | |
18 | DIMKPA C O, LATTA D E, MCLEAN J E, et al. Fate of CuO and ZnO nano- and microparticles in the plant environment[J]. Environ Sci Technol, 2013, 47(9): 4734-4742. |
19 | SHANG H, GUO H, MA C, et al. Maize (Zea mays L.) root exudates modify the surface chemistry of CuO nanoparticles: altered aggregation, dissolution and toxicity[J]. Sci Total Environ, 2019, 690: 502-510. |
20 | 王琪. 小麦根系在纳米银及其与银离子共存条件下对银的吸收研究[D]. 苏州:苏州科技大学, 2017. |
WANG Q. Uptake of silver by wheat root system in the presence of silver nanoparticles or it and silver ion[D]. Suzhou: Suzhou University of Science and Technology, 2017. | |
21 | GAO X, AVELLAN A, LAUGHTON S, et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil[J]. Environ Sci Technol, 2018, 52(5): 2888-2897. |
22 | 陈泽林. ZnO NPs对小麦的毒性及其与培养条件和生长阶段的关系研究[D]. 长春: 东北师范大学, 2017. |
CHEN Z L. Study on the toxicity of ZnO NPs to wheat and its relationship with culture conditions and growth stages[D]. Changchun: Northeast Normal University, 2017. | |
23 | RENWICK L C, DONALDSON K, CLOUTER A. Impairment of alveolar macrophage phagocytosis by ultrafine particles[J]. Toxicol Appl Pharmacol, 2001, 172(2): 119-127. |
24 | SHAYMURAT T, GU J X, XU C S, et al. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study[J]. Nanotoxicology, 2012, 6(3): 241-248. |
[1] | 王兵, 唐敏, 王颖, 刘志光. 微氧化烧结制备掺杂Y2O3的SiC陶瓷及含镉模拟废水处理[J]. 应用化学, 2022, 39(8): 1312-1318. |
[2] | 严磊, 毛秀海, 左小磊. 酸性条件下的DNA构象变化加速DNA变性解链[J]. 应用化学, 2022, 39(5): 837-842. |
[3] | 郭琦, 吴欣强, 韩恩厚, 柯伟. 高温水溶液pH值原位测量系统与机理[J]. 应用化学, 2016, 33(11): 1329-1336. |
[4] | 许泳吉, 张利, 赵雪萍. 纳米片状ZnO的室温制备及其胶状前体的稳定性分析[J]. 应用化学, 2012, 29(09): 1036-1040. |
[5] | 张庚华, 程金科, 王清江, 袁望治, 赵振杰. pH值对化学镀CoNiP复合丝GMI效应的影响[J]. 应用化学, 2008, 25(11): 1277-1280. |
[6] | 王学晨, 张兴祥, 张晓春, 樊耀峰, 牛建津. pH值对正十八烷微胶囊合成与性能的影响[J]. 应用化学, 2005, 22(9): 942-945. |
[7] | 牟英迪刘洪国张人杰黄伟冯绪胜. 亚相pH值对磷脂单层下甘氨酸结晶过程的影响[J]. 应用化学, 2005, 22(8): 823-828. |
[8] | 王慧云, 李明远,吴肇亮, 林梅钦, 董朝霞. 石油磺酸盐、HPAM、pH值对蒙脱土zeta电位的影响[J]. 应用化学, 2005, 22(8): 915-917. |
[9] | 戴肖南, 侯万国, 李俊娥, 张树芹. 胶含量、pH值及电解质对Mg-Fe-HTlc/高岭土分散体系流变性的影响[J]. 应用化学, 2005, 22(5): 475-478. |
[10] | 鲁慧丽, 蒲铜良, 曾正志, 王启祥. 二(5-磺基水杨酸)含硼酸稀土合成及其对干旱小麦幼苗脂膜的保护作用[J]. 应用化学, 2004, 21(11): 1097-1100. |
[11] | 丁克强, 王庆飞, 崔维真, 童汝亭, 王心葵. 钙调素膜在不同pH值溶液中的循环伏安行为[J]. 应用化学, 2002, 19(7): 696-698. |
[12] | 马亚鲁, 王英, 张彦军, 孙小兵. 钛酸四丁酯-醋酸钡-冰醋酸体系的溶胶-凝胶转变过程的研究[J]. 应用化学, 2002, 19(5): 450-454. |
[13] | 李青山, 张金朝, 宋鹂. 共沉淀条件对纳米级Sb/SnO2粒度和电性能的影响[J]. 应用化学, 2002, 19(2): 163-167. |
[14] | 葛际红, 宋昭峥, 张贵才, 赵福麟, 冷强. 二硫代氨基甲酸盐的除油机理及pH值对其除油性能的影响[J]. 应用化学, 2002, 19(12): 1170-1173. |
[15] | 庄云龙, 漆德瑶. 钠离子选择性双管微电极及在生物医学中的适用性[J]. 应用化学, 1990, 0(5): 94-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||