
应用化学 ›› 2022, Vol. 39 ›› Issue (9): 1391-1400.DOI: 10.19894/j.issn.1000-0518.210374
丁小健1, 曹从军1(), 侯成敏1, 马含笑1, 胡娇1, 任梦洁1, 杨国勇2
收稿日期:
2021-07-29
接受日期:
2021-11-15
出版日期:
2022-09-01
发布日期:
2022-09-08
通讯作者:
曹从军
基金资助:
Xiao-Jian DING1, Cong-Jun CAO1(), Cheng-Min HOU1, Han-Xiao MA1, Jiao HU1, Meng-Jie REN1, Guo-Yong YANG2
Received:
2021-07-29
Accepted:
2021-11-15
Published:
2022-09-01
Online:
2022-09-08
Contact:
Cong-Jun CAO
About author:
caocongjun@xaut.edu.comSupported by:
摘要:
针对目前用于油/水分离的超疏水材料普遍存在的原料不环保、不可降解、涂层耐久性差等缺点,采用简便的浸渍法,制备了一种环保、工艺简单且性能优良的超疏水材料。首先,使用水性聚氨酯(WPU)将聚甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯P(MMA-r-GMA)微球固定在棉织物表面,构造微纳米级粗糙结构。其次,通过水解-缩合反应,将无毒的十六烷基三甲氧基硅烷(HDTMS)与甲基三乙氧基硅烷(MTES)锚定在棉织物表面,制备得到超疏水棉织物。结果表明,改性棉织物接触角最高可达157.3(°),滚动角为5(°)。同时具有很好的耐溶剂性,在酸碱溶液中浸泡30 min后,接触角几乎无变化。油水分离效率最高可达97.8%,即使在经过10次循环分离之后,油水分离效率仍然在95%以上。该超疏水织物具有出色的油水分离效率和优良的稳定性,可用于可持续且环保的油水分离领域。
中图分类号:
丁小健, 曹从军, 侯成敏, 马含笑, 胡娇, 任梦洁, 杨国勇. 用于油/水分离的环保无氟超疏水织物的制备与性能[J]. 应用化学, 2022, 39(9): 1391-1400.
Xiao-Jian DING, Cong-Jun CAO, Cheng-Min HOU, Han-Xiao MA, Jiao HU, Meng-Jie REN, Guo-Yong YANG. Preparation and Performance of Environmentally Friendly Fluorine⁃Free Superhydrophobic Fabric for Oil/Water Separation[J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1391-1400.
图2 聚合物微球P(MMA-r-GMA)的反应原理、MTES和HDTMS在乙醇中的水解反应以及MTES和HDTMS在棉织物表面上发生的缩合反应
Fig.2 The reaction principle of polymer microsphere P(MMA-r-GMA), the hydrolysis reaction of MTES and HDTMS in ethanol, and the condensation reaction of MTES and HDTMS on the surface of cotton fabric
图3 (A) MMA、GMA与聚合物微球P(MMA-r-GMA) 和(B) MTES、HDTMS和HDTMS/MTES乙醇溶液的FT-IR谱图
Fig.3 (A) FT-IR spectra of MMA, GMA and polymer microsphere P(MMA-r-GMA) and (B) the ethanol solution of MTES, HDTMS and HDTMS/MTES
图5 棉织物改性前后疏水效果对比图: (A)改性前; (B)改性后; (C)水滴在改性棉织物上的接触角(WCA); (D)接触角随时间变化曲线
Fig.5 Comparison of hydrophobic effects of cotton before and after modification: (A) Before; (B) After; (C) WCA of the modified cotton; (D) Time-dependent curve of WCA
图6 改性前后棉织物纤维SEM图A.Unmodified cotton fabric fiber; B.Unmodified cotton fabric single fiber; C.Modified cotton fabric fiber; D.Modified cotton fabric single fiber
Fig.6 SEM images of cotton fabric before and after modification
图7 改性棉织物接触角在(A)化学腐蚀和(B)砂纸磨擦条件下的变化曲线
Fig.7 The influence of different failure conditions of (A) chemical corrosion and (B) sandpaper friction on the contact angle of modified cotton fabric
图8 超疏水织物表面上的甲基橙液滴照片: (A)金黄色, (B)橙红色, (C)红色
Fig.8 Photos of methyl orange droplets on the surface of superhydrophobic fabric: (A) golden yellow, (B) orange-red, (C) red
图10 (A-C)改性棉织物油水分离示意图; (D)各种有机化合物的油水分离效率; (E)氯仿分离效率与分离循环次数之间的关系
Fig.10 (A-C) Schematic diagram of oil-water separation of modified cotton fabric; (D) Oil-water separation efficiency of various organic compounds; (E) The relationship between chloroform separation efficiency and the number of separation cycles
1 | ZHANG Y Q, ZHANG Y W, CAO Q P, et al. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton[J]. Sci Total Environ, 2020, 706: 1-9. |
2 | CAI Y W, ZHAO Q, QUAN X J, et al. Fluorine-free and hydrophobic hexadecyltrimethoxysilane-TiO2 coated mesh for gravity-driven oil/water separation[J]. Colloid Surf A, 2020, 586: 1-11. |
3 | SIVASHUNMUGAM S, SHANTHANA L D, SINGARAVELU V, et al. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation[J]. Sustainable Mater Technol, 2021, 28: 1-22. |
4 | DENG Y, PENG C S, DAI M,et al. Recent development of super-wettable materials and their applications in oil-water separation[J]. J Cleaner Prod, 2020, 266: 1-26. |
5 | 石彦龙, 冯晓娟, 杨锐花, 等. 超疏水超亲油玉米秸秆粉油污吸附剂的制备及其在油水分离中的应用[J]. 应用化学, 2020, 37(7): 793-802. |
SHI Y L, FENG X J, YANG R H, et al. Preparation of superhydrophobic and superoleophilic corn straw fibers oil absorbentsand application to the removal of spilled oil from water[J]. Chinese J Appl Chem, 2020, 37(7): 793-802. | |
6 | ZHU Q, PAN Q, LIU F. Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges[J]. J Phys Chem C, 2011, 115(35): 17464-17470. |
7 | CHEN C L, WENG D, MAHMOOD A, et al. The separation mechanism and construction of surfaces with special wettability for oil/water separation[J]. ACS Appl Mater Interfaces, 2019: 1-68. |
8 | HE Y L, WAN M H, WANG Z H, et al. Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton Fabrics for oil/water separation[J]. Surf Coat Tech, 2019, 378: 1-11. |
9 | CHENG Q Y, LIU M C, LI Y D, et al. Biobased super-hydrophobic coating on cotton fabric fabricated by spray-coating for efficient oil/water separation[J]. Polym Test, 2018, 66: 41-47. |
10 | ZHANG W G, LIU S, LI M R, et al. A super-hydrophobic composite coating with near-infrared absorption properties[J]. Infrared Phys Technol, 2021, 112: 1-6. |
11 | NGUYEN-TRI P, TRAN H N, PLAMONDON C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: a review[J]. Prog Org Coat, 2019, 132: 235-256. |
12 | CAO C Y, WANG F, LU M. Superhydrophobic CuO coating fabricated on cotton fabric for oil/water separation and photocatalytic degradation[J]. Colloild Surf A, 2020, 601: 1-8. |
13 | ZHAO L, DU Z P, TAI X M, et al. One-step facile fabrication of hydrophobic SiO2 coated super-hydrophobic/super-oleophilic mesh via an improved stöber method to efficient oil/water separation[J]. Colloid Surf A, 2021, 623: 1-10. |
14 | ZHANG Z Y, LIU H, QIAO W C. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloid Surf A, 2020, 589: 1-12. |
15 | SOHRABI B, MANSOURI F, KHALIFAN S Z. The study of glass superhydrophobicity by modified SiO2-hexadecyltrimethoxysilane (SiO2-m-HDTMS) nanoparticles and mixture of surfactants[J]. Prog Org Coat, 2019, 131: 73-81. |
16 | XU P, LI X X. Fabrication of TiO2/SiO2 superhydrophobic coating for efficient oil/water separation[J]. J Environ Chem Eng, 2021, 9(4): 1-14. |
17 | YIN X, SUN C C, ZHANG B, et al. A facile approach to fabricate superhydrophobic coatings on porous surfaces using cross-linkable fluorinated emulsions[J]. Chem Eng J, 2017, 330: 202-212. |
18 | YANG M P, LIU W Q, JIANG C, et al. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process[J]. Carbohydr Polym, 2018, 197: 75-82. |
19 | ZHANG J Y, RAZA S, WANG P, et al. Polymer brush-grafted ZnO-modified cotton for efficient oil/water separation with abrasion/acid/alkali resistance and temperature “switch” property[J]. J Colloid Interf Sci, 2020, 580: 822-833. |
20 | ZHANG J Y, WANG P, WEN H,et al. Polymer brush-grafted cotton with petal-like microstructure as superhydrophobic and self-cleaning adsorbents for oil/water separation[J]. Colloid Surf A, 2021, 621: 1-13. |
21 | 王雅婷. 疏水亲油纸基复合材料的制备及其油水分离特性的研究[D].广州: 华南理工大学, 2017. |
WANG Y T. Preparation of hydrophobic/oleophilic materials based on paper and study of the water/oil separation characteristics[D].Guangzhou: South China University of Technology, 2017. | |
22 | SUN R Y, YU N K, ZHAO J, et al. Chemically stable superhydrophobic polyurethane sponge coated with ZnO/epoxy resin coating for effective oil/water separation[J]. Colloid Surf A, 2021, 611: 1-7. |
23 | TALEBIZADEHSARDARI P, SEYFI J, HEJAZI I, et al. Enhanced chemical and mechanical durability of superhydrophobic and superoleophilic nanocomposite coatings on cotton fabric for reusable oil/water separation applications[J]. Colloid Surf A, 2020, 603: 1-8. |
24 | ZHAI G Z, QI L X, HE W, et al. Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment[J]. Environ Pollut, 2021, 269: 1-9. |
25 | CHAUHAN P, KUMAR A, BHUSHAN B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique[J]. J Colloid Interface Sci, 2019, 535: 66-74. |
26 | ZHANG L B, ZHANG Z H, WANG P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation[J]. NPG Asia Mater, 2012, 4(2): 1-8. |
27 | BAYRAMOGLUAB G, YILMAZA M, SENELB A Ü, et al. Preparation of nanofibrous polymer grafted magnetic poly(GMA-MMA)-g-MAA beads for immobilization of trypsin via adsorption[J]. Biochem Eng J, 2008, 40(2): 262-274. |
28 | ISLAM A, KUMAR S, ZAIDI N, et al. SPE coupled to AAS trace determination of Cd(II) and Zn(II) in food samples using amine functionalized GMA-MMA-EGDMA terpolymer: isotherm and kinetic studies[J]. Food Chem, 2016, 213: 775-783. |
29 | HE S, CHEN X F. Flexible silica aerogel based on methyltrimethoxysilane with improved mechanical property[J]. J Non-cryst Solids, 2017, 463: 6-11. |
30 | ZHANG M, WANG C Y, WANG S L, et al. Fabrication of coral-like superhydrophobic coating on filter paper for water⁃oil separation[J]. Appl Surf Sci, 2012, 261: 764-769. |
31 | CHAUHANA P, KUMARA A, BHUSHANB B. Self-cleaning, stain-resistant and anti-bacterial superhydrophobic cotton fabric prepared by simple immersion technique[J]. J Colloid Interface Sci, 2019, 535: 66-74. |
[1] | 林楠煜, 高峰, 曲江英, 涂晶晶, 钟伟军, 臧云浩. 超亲水/水下疏油高硅布的制备及其油水分离性能[J]. 应用化学, 2023, 40(3): 449-459. |
[2] | 张文婧, 王德辉, 邓旭. 仿生超疏水表面的抗冷凝失效研究进展[J]. 应用化学, 2022, 39(1): 142-153. |
[3] | 高子亭, 李占超, 蒋谦, 高俊丽, 刘星宇, 汪子明. 一种木醋液制备环保型融雪剂的方法[J]. 应用化学, 2021, 38(8): 1022-1024. |
[4] | 石彦龙, 冯晓娟, 杨锐花, 王健荣. 超疏水超亲油玉米秸秆粉油污吸附剂的制备及其在油水分离中的应用[J]. 应用化学, 2020, 37(7): 793-802. |
[5] | 彭继华, 郭贵宝. 四甲基氢氧化铵改性聚偏氟乙烯一步接枝聚苯乙烯磺酸油水分离膜的制备及性能[J]. 应用化学, 2019, 36(8): 909-916. |
[6] | 侯成敏,李娜,董海涛,寇艳萍. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
[7] | 石彦龙,冯晓娟,康恺,侯杨. 溶液浸泡结合表面涂层制备超疏水-超疏油表面[J]. 应用化学, 2019, 36(3): 358-366. |
[8] | 刘俊劭, 刘瑞来, 赵瑨云, 饶瑞晔. 三醋酸纤维素纳米纤维膜的制备及其油水分离应用[J]. 应用化学, 2017, 34(5): 512-518. |
[9] | 石彦龙, 汪志丹, 方芸, 吕涛, 冯晓娟, 冯雷, 杨武. 超疏水超亲油铜网的制备及其在油水分离中的应用[J]. 应用化学, 2017, 34(4): 472-480. |
[10] | 杨啸天, 帅茜, 罗艳梅, 董亦可, 谭月明, 陈波, 马铭. 聚二甲基硅氧烷/微纳米银/聚多巴胺修饰的超疏水海绵的制备和应用[J]. 应用化学, 2015, 32(6): 726-732. |
[11] | 邓晓庆, 商静芬, 王侦, 石慧, 张君芳, 苏孝礼, 谢青季, 马铭. 超疏水棉花的制备及用于油水分离[J]. 应用化学, 2013, 30(07): 826-833. |
[12] | 刘金秋, 柏冲, 徐文华, 张献, 刘迎凯, 姚金水, 刘伟良. 高黏附性超疏水表面的研究进展[J]. 应用化学, 2013, 30(07): 733-739. |
[13] | 任杰, 廖瑞瑞, 杨武, 李岩, 高锦章. 辉光放电电解等离子体处理制备铁基表面超疏水材料[J]. 应用化学, 2013, 30(02): 208-213. |
[14] | 王凤平, 闫姝均. 直接浸泡法构筑纯铜的超疏水表面[J]. 应用化学, 2012, 29(11): 1291-1296. |
[15] | 叶文波, 黄世俊, 关怀民, 童跃进. 超疏水聚硅氧烷涂层的制备及其性能[J]. 应用化学, 2012, 29(10): 1123-1129. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 751
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 702
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||