应用化学 ›› 2022, Vol. 39 ›› Issue (1): 142-153.DOI: 10.19894/j.issn.1000-0518.210486

• 综合评述 • 上一篇    下一篇

仿生超疏水表面的抗冷凝失效研究进展

张文婧1, 王德辉1,2(), 邓旭2   

  1. 1.电子科技大学长三角研究院,湖州 313000
    2.电子科技大学基础与前沿研究院,成都 610054
  • 收稿日期:2021-09-30 接受日期:2021-11-01 出版日期:2022-01-01 发布日期:2022-01-10
  • 通讯作者: 王德辉
  • 基金资助:
    国家自然科学基金(22072014);四川省杰出青年科技人才项目(2021JDJQ0013);四川省科技计划项目(2021JDRC0016);成都市国际科技合作重点项目(2021-GH02-00105-HZ)

Research Progress on Condensation⁃Induced Invalid of Super⁃hydrophobicity

ZHANG Wen-Jing1,WANG De-Hui1,2(),DENG Xu2   

  1. 1.Yangtze Delta Region Institute of University of Electronic Science and Technology of China,Huzhou 313000,China
    2.Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology,Chengdu 610054,China
  • Received:2021-09-30 Accepted:2021-11-01 Published:2022-01-01 Online:2022-01-10
  • Contact: De-Hui WANG
  • About author:wangdehui@uestc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22072014);the Program for Scientific?Technical Young Talents of Sichuan(2021JDJQ0013);Sichuan Science and Technology Program(2021JDRC0016);the Key Projects in International Science & Technology Cooperation Program of Chengdu, Sichuan(2021?GH02?00105?HZ)

摘要:

在存在一定过冷度或蒸汽过饱和度的条件下,水蒸汽可在固体表面凝结成核。随着过冷度增大,液滴成核半径将随之减小,冷凝液滴的生长融合将无法避免地发生在超疏水表面不可或缺的微/纳米结构内。若液滴不能及时排出,则会滞留在表面结构内并挤出空气,形成局部浸润,导致材料表面的超疏水性能下降或失效,甚至引起泛洪。本文首先总结了表面因冷凝诱导超疏水性失效的机制,并分析了解决该问题存在的难点。随后对近年来通过微/纳结构优化、提高成核空间选择性和外部能量输入3类方法提升表面抗冷凝失效性能的研究进展进行了总结。尽管上述方法使表面的抗冷凝失效能力获得一定程度的提高,但在面对高过冷度、持续冷凝等较为苛刻的环境时,仍然无法保证表面浸润性的长效稳定。因此,超疏水表面因冷凝诱导润湿性转变的问题成为限制其广泛实际应用的关键难题。

关键词: 超疏水表面, 冷凝, 润湿性转变

Abstract:

The water vapor condenses on solid surface in the presence of subcooling or supersaturation. Based on the wettability principles, the radius of condensed droplets decrease with subcooling increases, which contributed to the condenses of droplets in the gaps between micro/nano structures on the superhydrophobic surfaces. The condensed droplet would wet the surface if it sticks on the surface during condensation, which would destroy the super-hydrophobicity of the surface, even result in flooding. The previous research to anti-invalid of super-hydrophobicity during condensation could be classified into three modes: optimization of the micro/nano structure of surface, improvement in spatial selectivity of nucleation and introduction of external energy. Even though the methods above improved greatly in maintaining super-hydrophobicity during condensation, no one could prevent the infiltration of the droplets into the gaps between micro/nano structures. Therefore, the application of superhydrophobic surface depends highly on the wetting properties of the surface during condensation.

Key words: Superhydrophobic surface, Condensation, Wetting transition

中图分类号: