应用化学 ›› 2022, Vol. 39 ›› Issue (8): 1252-1261.DOI: 10.19894/j.issn.1000-0518.210458
杜卫民1(), 刘欣1,2, 朱琳1, 付佳敏1, 郭文山1, 杨晓晴1, 双培硕1
收稿日期:
2021-09-08
接受日期:
2022-02-17
出版日期:
2022-08-01
发布日期:
2022-08-04
通讯作者:
杜卫民
基金资助:
Wei-Min DU1(), Xin LIU1,2, Lin ZHU1, Jia-Min FU1, Wen-Shan GUO1, Xiao-Qing YANG1, Pei-Shuo SHUANG1
Received:
2021-09-08
Accepted:
2022-02-17
Published:
2022-08-01
Online:
2022-08-04
Contact:
Wei-Min DU
About author:
dwmchem@163.comSupported by:
摘要:
通过一步溶剂热法成功合成了泡沫镍(NF)支撑的三元镍基硫属化物(Ni3(Se x S1-x )2)纳米棒阵列。结构表征结果表明,所得三元Ni3(Se x S1-x )2纳米棒属于三方物相,在泡沫镍基底上形成了有序的阵列结构。由于其快速的载流子传输效率、丰富的活性位点和多阴离子的协同效应,Ni3(Se0.3S0.7)2/NF纳米棒阵列具有最佳的电催化性能。在1.0 mol/L的KOH溶液中,电流密度为50 mA/cm2时,过电势仅为344 mV,塔菲尔斜率为40.17 mV/dec,同时具有优异的电化学稳定性。更重要的是,以商用Pt/C为阴极,Ni3(Se0.3S0.7)2/NF纳米棒阵列为阳极进行全分解水实验,仅需要1.49 V的电池电位即可提供10 mA/cm2的电解电流,表现出良好的电解水效果。该研究为电解水技术领域提供了一种高效的电催化剂,也为电化学能源技术中非贵重电催化剂的合理构建提供了有价值的见解。
中图分类号:
杜卫民, 刘欣, 朱琳, 付佳敏, 郭文山, 杨晓晴, 双培硕. 三元镍基硫属化物纳米棒阵列的简单合成及其高效的电催化析氧性能[J]. 应用化学, 2022, 39(8): 1252-1261.
Wei-Min DU, Xin LIU, Lin ZHU, Jia-Min FU, Wen-Shan GUO, Xiao-Qing YANG, Pei-Shuo SHUANG. Facile Synthesis and High⁃Efficiency Electrocatalytic Oxygen Evolution Performance of Ternary Nickel⁃Based Chalcogenide Nanorod Arrays[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1252-1261.
图1 (A)Ni3(Se x S1-x )2/NF系列材料的XRD表征;合成的Ni3S2/NF(B)、Ni3Se2/NF(C)和Ni3(Se0.3S0.7)2/NF(D)的扫描电子显微镜照片(插图为高放大倍数照片)
Fig.1 (A) XRD characterization of Ni3(Se x S1-x )2/NF materials;SEM images of the synthesized products:Ni3S2/NF (B),Ni3Se2/NF (C) and Ni3(Se0.3S0.7)2/NF (D) (the inserts are the high-magnification ones)
图2 (A)从泡沫镍上剥落下来的Ni3(Se0.3S0.7)2的EDX图;(B)Ni3(Se0.3S0.7)2的HRTEM照片(插图为TEM图)
Fig.2 (A) EDX pattern of Ni3(Se0.3S0.7)2 peeled from NF;(B) HRTEM image of Ni3(Se0.3S0.7)2 (the insert is the TEM one)
图4 (A)所得电极材料的LSV曲线图;(B)在50和100 mA/cm2的电流密度下5种电极的过电位对比;(C)所得电极材料的Tafel曲线;(D)所得电极材料电流密度与扫速的关系图
Fig.4 (A) LSV curves of the obtained electrode materials;(B) Compared overpotentials of five electrodes at current densities of 50 and 100 mA/cm2;(C) Tafel curves of the obtained electrode materials;(D) The relationship between the current density and the scanning rate
图5 (A,B)所得电极不同放大倍数的EIS图;(C)Ni3(Se0.3S0.7)2/NF电极与其它镍基催化剂过电位的对比;(D) Ni3(Se0.3S0.7)2/NF电极经过1000次循环伏安测试后的LSV对比曲线(插图是Ni3(Se0.3S0.7)2/NF电极的i-t曲线)
Fig.5 (A,B) EIS diagrams at different magnifications of the obtained electrodes;(C) Overpotential comparison between Ni3(Se0.3S0.7)2/NF electrodes and other nickel-based catalysts;(D) Compared LSV curves of Ni3(Se0.3S0.7)2/NF electrode after 1000 cycles of cyclic voltammetry(the insert is the amperometric i-t curve of Ni3(Se0.3S0.7)2/NF electrodes)
图6 (A) Ni3(Se0.3S0.7)2/NF Pt/C/NF 电解槽在全电解水制氢过程的照片;(B)Ni3(Se0.3S0.7)2/NFPt/C/NF和IrO2/NFPt/C/NF电解槽在1.0 mol/L KOH电解液中进行全分解水制氢的LSV对比曲线(插图是电解槽的i-t曲线)
Fig.6 (A) Overall water splitting photographs of Ni3(Se0.3S0.7)2/NF Pt/C/NF electrolysis cell;(B) Compared LSV curves of Ni3(Se0.3S0.7)2/NF Pt/C/NF electrolysis cell in 1.0 mol/L KOH electrolyte for overall water splitting to produce hydrogen (the insert is the amperometric i-t curve of the electrolysis cell)
1 | DEBE M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51. |
2 | ZHENG Y, JIAO Y, JARONIEC M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew Chem Int Ed, 2015, 54(1): 52-65. |
3 | CUI B, LIN H, LI J B, et al. Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications[J]. Adv Funct Mater, 2008, 18(9): 1440-1447. |
4 | ASLAM S, SAGAR R U R, KUMAR H, et al. Mixed-dimensional heterostructures of hydrophobic/hydrophilic graphene foam for tunable hydrogen evolution reaction[J]. Chemosphere, 2020, 245(4): 125607.125601-125607.125608. |
5 | HONG W T, RISCH M, STOERZINGER K A, et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J]. Energ Environ Sci, 2015, 8(5): 1404-1427. |
6 | YAO R Q, SHI H, WAN W B, et al. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv Mater, 2020, 32(10): 1907214. |
7 | BUVAT G, ESLAMIBIDGOLI M J, YOUSSEF A H, et al. Effect of IrO6 octahedron distortion on the OER activity at (100) IrO2 thin film[J]. ACS Catal, 2020, 10(1): 806-817. |
8 | CHEN S, HUANG H, JIANG P, et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media[J]. ACS Catal, 2020, 10(2): 1152-1160. |
9 | CHO K H, SEO H, PARK S, et al. Uniform, assembled 4 nm Mn3O4 nanoparticles as efficient water oxidation electrocatalysts at neutral pH[J]. Adv Funct Mater, 2020, 30(10): 1910424. |
10 | XIAO Z H, WANG Y, HUANG Y C, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energ Environ Sci, 2017, 10(12): 2563-2569. |
11 | YUAN G, HU Y J, WANG Z H, et al. Facile synthesis of self-supported amorphous phosphorus-doped Ni(OH)2 composite anodes for efficient water oxidation[J]. Catal Sci Technol, 2020, 10(1): 263-267. |
12 | CHU W J, SHI Z J, HOU Y D, et al. Trifunctional of phosphorus-doped NiCo2O4 nanowire materials for asymmetric supercapacitor, oxygen evolution reaction, and hydrogen evolution reaction[J]. ACS Appl Mater Interfaces, 2020, 12(2): 2763-2772. |
13 | ZHANG K, MIN X, ZHANG T, et al. Biodeposited nano-CdS drives the in situ growth of highly dispersed sulfide nanoparticles during pyrolysis for enhanced oxygen evolution reaction[J]. ACS Appl Mater Interfaces, 2020, 12(49): 54553-54562. |
14 | YOU B, SUN Y J. Innovative strategies for electrocatalytic water splitting[J]. Acc Chem Res, 2018, 51(7): 1571-1580. |
15 | WANG H F, TANG C, ZHANG Q. A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries[J]. Adv Funct Mater, 2018, 28(46): 1803329. |
16 | ZENG L, SUN K, CHEN Y, et al. Neutral-pH overall water splitting catalyzed efficiently by a hollow and porous structured ternary nickel sulfoselenide electrocatalyst[J]. J Mater Chem A, 2019, 7(28): 16793-16802. |
17 | ACEDERA R A E, GUPTA G, MAMLOUK M, et al. Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium[J]. J Alloys Compd, 2020, 836: 154919. |
18 | SHI X, WANG H, KANNAN P, et al. Rich-grain-boundary of Ni3Se2 nanowire arrays as multifunctional electrode for electrochemical energy storage and conversion applications[J]. J Mater Chem A, 2019, 7(7): 3344-3352. |
19 | DENG S, SHEN Y, XIE D, et al. Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction[J]. J Energy Chem, 2019, 39: 61-67. |
20 | XU R, WU R, SHI Y, et al. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations[J]. Nano Energy, 2016, 24: 103-110. |
21 | HUANG Z F, SONG J J, DU Y H, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nat Energy, 2019, 4(4): 329-338. |
22 | LIN J, WANG H, YAN Y, et al. Sandwich-like structured NiSe2/Ni2P@FeP interface nanosheets with rich defects for efficient electrocatalytic water splitting[J]. J Power Sources, 2020, 445: 227294. |
23 | MA F X, YU L, XU C Y, et al. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[J]. Energ Environ Sci, 2016, 9(3): 862-866. |
24 | ZHANG Q, ZHONG H X, MENG F, et al. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode[J]. Nano Res, 2018, 11(3): 1294-1300. |
25 | PAN J, HAO S, ZHANG X, et al. In situ growth of Fe and Nb co-doped β-Ni(OH)2 nanosheet arrays on nickel foam for an efficient oxygen evolution reaction[J]. Inorg Chem Front, 2020, 7(18): 3465-3474. |
26 | FANG L, LI W, GUAN Y, et al. Tuning unique peapod-like Co(SxSe1- x)2 nanoparticles for efficient overall water splitting[J]. Adv Funct Mater, 2017, 27(24): 1701008. |
27 | CHEN H, GAO Y, YE L, et al. A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction[J]. Chem Commun, 2018, 54(39): 4979-4982. |
28 | KRISHNAMOORTHY K, VEERASUBRAMANI G K, RADHAKRISHNAN S, et al. One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application[J]. Chem Eng J, 2014, 251: 116-122. |
29 | GU Y, DU W, LIU X, et al. Matching design of high-performance electrode materials with different energy-storage mechanism suitable for flexible hybrid supercapacitors[J]. J Alloy Compd, 2020, 844: 156196. |
30 | GU Y, DU W, DARRAT Y, et al. In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors[J]. Appl Nanosci, 2019, 10(5): 1591-1601. |
31 | ZHENG J, CHENG K, ZHANG R, et al. Hydrothermal preparation of CQDs/MoS2/NiSe2 composite as electrode material for supercapacitor[J]. J Mater Sci-Mater El, 2020, 31(12): 9366-9376. |
32 | DAI Z, XUE L, ZHANG Z, et al. Construction of single-phase nickel disulfide microflowers as high-performance electrodes for hybrid supercapacitors[J]. Energ Fuel, 2020, 34(8): 10178-10187. |
33 | MIAO Y, ZHANG X, ZHAN J, et al. Hierarchical NiS@CoS with controllable core-shell structure by two-step strategy for supercapacitor electrodes[J]. Adv Mater Interfaces, 2019, 7(3): 1901618. |
34 | DU L, DU W, REN H, et al. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors[J]. J Mater Chem A, 2017, 5(43): 22527-22535. |
35 | HOU L, SHI Y, WU C, et al. Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors[J]. Adv Funct Mater, 2018, 28(13): 1705921. |
36 | VRUBEL H, MOEHL T, GRAETZEL M, et al. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction[J]. Chem Commun, 2013, 49(79): 8985-8987. |
37 | CUI W, CHENG N, LIU Q, et al. Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation[J]. ACS Catal, 2014, 4(8): 2658-2661. |
38 | YANG M, LU W, JIN R, et al. Superior oxygen evolution reaction performance of Co3O4/NiCo2O4/Ni foam composite with hierarchical structure[J]. ACS Sustain Chem Eng, 2019, 7(14): 12214-12221. |
39 | ELIZABETH I, NAIR A K, SINGH B P, et al. Multifunctional Ni-NiO-CNT composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction[J]. Electrochim Acta, 2017, 230: 98-105. |
40 | LIANG H, MENG F, CAB N-ACEVEDO M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis[J]. Nano Lett, 2015, 15(2): 1421-1427. |
41 | ZHOU W, WU X J, CAO X, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energ Environ Sci, 2013, 6(10): 2921-2924. |
42 | AIJAZ A, MASA J, R SLER C, et al. Metal-organic framework derived carbon nanotube grafted cobalt/carbon polyhedra grown on nickel foam: an efficient 3D electrode for full water splitting[J]. Chemelectrochem, 2016, 4(1): 188-193. |
43 | LIANG H, GANDI A N, ANJUM D H, et al. Plasma-assisted synthesis of NiCoP for efficient overall water splitting[J]. Nano Lett, 2016, 16(12): 7718-7725. |
44 | TAHIRA M, PANA L, IDREESD F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review[J]. Nano Energy 2017, 37: 136-157. |
[1] | 李颖, 张云, 林良良, 许虎君. N‑月桂酰基甲基丙氨酸钠三元复配体系的协同效应[J]. 应用化学, 2022, 39(8): 1262-1273. |
[2] | 孙小彤,陈南,梁含雪,李增领,刘倩雯,曲良体. 阳极氧化铝模板限域制备一维杂化纳米材料及其多样化应用的研究进展[J]. 应用化学, 2020, 37(2): 123-133. |
[3] | 杨涛, 刘文凤, 马梦月, 董红玉, 杨书廷. 三元锂离子动力电池衰减机理[J]. 应用化学, 2020, 37(10): 1181-1186. |
[4] | 张通, 欧阳金阳, 赵晓礼, 杨小牛. 喷涂法制备高效率三元体系聚合物太阳能电池[J]. 应用化学, 2020, 37(1): 24-31. |
[5] | 胡宽, 江海, 黄冬, 刘畅, 张坤玉, 潘莉. 聚丁二酸丁二醇酯与氯醚弹性体协同增韧改性聚乳酸多元共混体系[J]. 应用化学, 2019, 36(9): 996-1002. |
[6] | 蔡毅,郭洪辰,曹瀚,高凤翔,周庆海,王献红. 耐紫外光老化CO2共聚物的合成与性能[J]. 应用化学, 2019, 36(11): 1248-1256. |
[7] | 石佳,宋煌旺,朱祺东,林强,朱林华,刘英豪,钟万林. 球磨双金属氰催化剂催化CO2/ 环氧丙烷/四氯苯酐三元共聚[J]. 应用化学, 2018, 35(6): 659-664. |
[8] | 张和,张梦诗,廖世军. 富锂三元层状正极材料的研究进展[J]. 应用化学, 2018, 35(11): 1277-1288. |
[9] | 朱艳, 原光, 原帅, 陈少杰, 姚卫琴, 田龙昭, 秦帆, 刘林梅. 碱和盐对十二烷基硫酸钠/正戊醇-环己烷-水拟三元体系相图影响[J]. 应用化学, 2017, 34(7): 833-838. |
[10] | 朱兆强,杜卫民,郭威,朱文娟. 过渡金属三元化合物的制备及其应用于超级电容器的研究进展[J]. 应用化学, 2016, 33(3): 267-276. |
[11] | 王农, 孟庆络. 辛烷基酚聚氧乙烯醚反相微乳体系的相行为及纳米复合碳酸盐的制备[J]. 应用化学, 2015, 32(5): 597-603. |
[12] | 王真真, 李方方, 郭涵, 冯九菊, 王爱军. 水热法原位合成纳米氧化锌阵列及其光催化应用[J]. 应用化学, 2013, 30(06): 667-672. |
[13] | 康万利, 李媛, 单秀华, 范海明, 崔文洪, 张鑫. 三元复合驱碱/表面活性剂/聚合物模拟原油乳状液稳定动力学特性[J]. 应用化学, 2012, 29(04): 428-433. |
[14] | 程修文, 于秀娟. C-N-S-TiO2光催化剂的制备、表征及其性能[J]. 应用化学, 2012, 29(03): 291-296. |
[15] | 王毓嘉, 王攀, 魏顺安, 董立春, 杨楠, 尤新强. 1,4-丁二醇蒸馏底物解聚溶液组成的分析方法[J]. 应用化学, 2012, 29(02): 228-232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||