1 |
LIU C, SUN S, ZHU X, et al. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: a mini review[J]. Waste Manage Res, 2021, 39(1): 43-52.
|
2 |
DONG H, ZHAO J, CHEN J, et al. Recovery of platinum group metals from spent catalysts: a review[J]. Int J Miner Process, 2015, 145: 108-113.
|
3 |
JUNG W S, POPOV B N. Hybrid cathode catalyst with synergistic effect between carbon composite catalyst and Pt for ultra-low Pt loading in PEMFCs[J]. Catal Today, 2017, 295: 65-74.
|
4 |
刘艳伟, 杨滨, 李艳. 铂族金属在现代工业中的应用[J]. 南方金属, 2009, 167(2): 1-3, 19.
|
|
LIU Y W, YANG B, LI Y. Applications of platinum-group metals in modern industries[J]. Southern Met, 2009, 167 (2): 1-3, 19.
|
5 |
杨丽. 体系相互作用与发光和催化机理研究 [D]. 合肥: 中国科学技术大学, 2017
|
|
YANG L. Study of system interactions on luminescence and catalyticn mechanism[D]. Hefei: University of Science and Technology of China, 2017.
|
6 |
ZHANG H, JIN M S, XIONG Y J, et al. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications[J]. Acc Chem Res, 2013, 46(8): 1783-1794.
|
7 |
WU J, QI L, YOU H, et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. J Am Chem Soc, 2012, 134(29): 11880-11883.
|
8 |
LEE Y W, KIM M, KIM Z H, et al. One-step synthesis of Au@Pd core-shell nanooctahedron[J]. J Am Chem Soc, 2009, 131(47): 17036-17037.
|
9 |
WANG L, YAMAUCHI Y. Autoprogrammed synthesis of triple-layered Au@ Pd@ Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell[J]. J Am Chem Soc, 2010, 132(39): 13636-13638.
|
10 |
WANG W, WANG Z Y, WANG J, et al. Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction[J]. Adv Sci, 2017, 4(4): 1600486.
|
11 |
ZHANG C, WANG T, DING Y. Influence of Pt particle size on the activity of Pt/AC catalyst in selective oxidation of glycerol to lactic acid[J]. Catal Lett, 2017, 147(5): 1197-1203.
|
12 |
罗磊. 铁酸盐纳米纤维复合负极材料的制备及储锂性能研究[D]. 无锡: 江南大学, 2017.
|
|
LUO L. Preparation and lithium storage properties of ferrite nanofiber composite anode[D]. Wuxi: Jiangnan University, 2017.
|
13 |
CASBEER E, SHARMAV K, LI X Z. Synthesis and photocatalytic activity of ferrites under visible light: a review[J]. Sep Purif Technol, 2012, 87: 1-14.
|
14 |
FEDAILAINE M, BEELLAL B, BERKANI S, et al. Photo-electrochemical characterization of the spinel CuFe2O4: application to Ni2+ removal under solar light[J]. Environ Sci-proc Imp, 2016, 3(2): 387-396.
|
15 |
HASHEMIAN S, ARDAKANI M K, SALEHIFAR H. Kinetics and thermodynamics of adsorption methylene blue onto tea waste/CuFe2O4 composite[J]. J Anal Chem, 2013, 4(7A): 2013.
|
16 |
REDDY D H K, YUN Y S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification?[J]. Coordin Chem Rev, 2016, 315: 90-111.
|
17 |
杨珂, 唐琪, 杨晓丹, 等. 铁酸铜非均相活化过硫酸盐降解罗丹明B[J]. 中国环境科学, 2019, 39(9): 3761-3769.
|
|
YANG K, TANG Q, YANG X D, et al. Degradation of rhodamine B by heterogeneous activation of persulfate with copper ferrate[J]. China Environ Sci, 2019, 39(9): 3761-3769.
|
18 |
YANG H, YAN J, LU Z, et al. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation[J]. J Alloy Compd, 2009, 476(1/2): 715-719.
|
19 |
ZHANG R, LIU J, WANG S, et al. Magnetic CuFe2O4 nanoparticles as an efficient catalyst for C-O cross-coupling of phenols with aryl halides[J]. Chem Cat Chem, 2011, 3(1): 146-149.
|
20 |
GUO Y, ZHANG L, LIU X, et al. Synthesis of magnetic core-shell carbon dot@ MFe2O4 (M= Mn, Zn and Cu) hybrid materials and their catalytic properties[J]. J Mater Chem A, 2016, 4(11): 4044-4055.
|
21 |
QIN Q, LIU Y, LI X, et al. Enhanced heterogeneous fenton-like degradation of methylene blue by reduced CuFe2O4[J]. RSC Adv, 2018, 8(2): 1071-1077.
|
22 |
YE P, WU D, WANG M, et al. Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation[J]. Appl Surf Sci, 2018, 428: 131-139.
|
23 |
李跃军, 曹铁平, 赵艳辉, 等. Bi@Bi2Sn2O7/TiO2等离子体复合纤维的制备及增强的光催化产氢活性[J]. 无机化学学报, 2019, 35(8): 1371-1378.
|
|
LI Y J, CAO T P, ZHAO Y H, et al. Preparation of Bi@Bi2Sn2O7/TiO2 plasmonic composite fibers with enhanced photocatalytic hydrogen generation activity [J]. Chinese J Inorg Chem, 2019, 35(8): 1371-1378.
|
24 |
LONG Y, LIANG K, NIU J, et al. Pt NPs immobilized on core-shell magnetite microparticles: novel and highly efficient catalysts for the selective aerobic oxidation of ethanol and glycerol in water[J]. Dalton T, 2015, 44 (18): 8660-8668.
|
25 |
LIMA D R, JIANG N, LIU X, et al. Employing calcination as a facile strategy to reduce the cytotoxicity in CoFe2O4 and NiFe2O4 nanoparticles[J]. ACS Appl Mater Interfaces, 2017, 9(45): 39830-39838.
|
26 |
GUO S, DONG S, WANG E, et al. A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostructures [J]. Chem-Eur J, 2009, 15(10): 2416-2424.
|
27 |
郭少波, 梁艳莉, 季晓晖, 等. 纳米核壳型Ag@Fe3O4复合材料的制备、催化及抑菌性能[J]. 复合材料学报, 2021, 38(3): 816-823.
|
|
GUO S B, LIANG Y L, JI X H, et al. Preparation, catalytic property and antibacterial property of Ag@Fe3O4 core-shell composite nanomaterials[J].Acta Mater Compos Sin, 2021, 38(3): 816-823.
|
28 |
BHUI D K, MISRA A. Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity [J]. Carbohydr Polym, 2012, 89(3): 830-835.
|