1 |
ZHAO N N, ENNS C A. Iron transport machinery of human cells: players and their interactions[J]. Curr Top Membr, 2012, 69: 67-93.
|
2 |
HENTZE M W, MUCKENTHALER M U, GALY B, et al. Two to tango: regulation of mammalian iron metabolism[J]. Cell, 2010, 142: 24-38.
|
3 |
YE H, ROUAULT T A. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease[J]. Biochemistry, 2010, 49: 4945-4956.
|
4 |
GAO J Y, ZHOU Q L, WU D. Mitochondrial iron metabolism and its role in diseases[J]. Clin Chim Acta, 2020, 513: 16-12.
|
5 |
QUE E L, DOMAILLE D W, CHANG C J. Metals in neurobiology: probing their chemistry and biology with molecular imaging[J]. Chem Rev, 2008, 108: 1517-1549.
|
6 |
TIEMANN K J, GARDEA-TORRESDEY J L, GAMEZ G, et al. Effects of oxidation state on metal ion binding by Medicago sativa (Alfalfa): atomic and X-ray absorption spectroscopic studies with Fe(Ⅱ) and Fe(Ⅲ)[J]. Environ Sci Technol, 2000, 34(4): 693-698.
|
7 |
MACIEL J V, SOARES B M, MANDLATE J S, et al. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry[J]. J Agric Food Chem, 2014, 62(33): 8340-8345.
|
8 |
WANG J H, FAN Y D, LEE H W, et al. Ultrasmall metal-organic framework Zn-MOF-74 nanodots: size-controlled synthesis and application for highly selective colorimetric sensing of iron(Ⅲ) in aqueous solution[J]. ACS Appl Nano Mater, 2018, 1(7): 3747-3753.
|
9 |
APILUX A, DUNGCHAI W, SIANGPROH W, et al. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron[J]. Anal Chem, 2010, 82(5): 1727-1732.
|
10 |
CHEN T H, TSENG W L. Self-assembly of monodisperse carbon dots into high-brightness nanoaggregates for cellular uptake imaging and iron(Ⅲ) sensing[J]. Anal Chem, 2017, 89: 11348-11356.
|
11 |
公少华, 张霞, 李娜, 等. 共价有机框架材料在光催化领域中的应用[J]. 高等学校化学学报, 2020, 41(9): 1933-1944.
|
|
GONG S H, ZHANG X, LI N, et al. Photocatalytic application of covalent organic frameworks[J]. Chem J Chinese Univ, 2020, 41(9): 1933-1944.
|
12 |
张勇, 申城, 幸志荣, 等. 可视化检测次氯酸的苯并咪唑类荧光增强型探针[J]. 高等学校化学学报, 2019, 40(12): 2480-2485.
|
|
ZHANG Y, SHEN C, XING Z R, et al. Benzimidazole-derived fluorescence enhancement probe for visual detection of HClO[J]. Chem J Chinese Univ, 2019, 40(12): 2480-2485.
|
13 |
MA X, WANG J, TIAN H. Assembling-induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence[J]. Acc Chem Res, 2019, 52: 738-748.
|
14 |
CARTER K P, YOUNG A M, PALMER A E. Fluorescent sensors for measuring metal ions in living systems[J]. Chem Rev, 2014, 114: 4564-4601.
|
15 |
CHEN Y C, OSES-PRIETO J A, POPE L E, et al. Reactivity-based probe of the iron (II)-dependent interactome identifies new cellular modulators of ferroptosis[J]. J Am Chem Soc, 2020, 142(45): 19085-19093.
|
16 |
WANG W, WEI J W, LIU H M, et al. A novel colorimetric chemosensor based on quinoline for the sequential detection of Fe3+ and PPi in aqueous solution[J]. Tetrahedron Lett, 2017, 58: 1025-1029.
|
17 |
LIU Q M, WANG H, GUO H R, et al. A highly selective coumarin-based fluorescent probe for detecting Fe3+ in pure water systems and living cells[J]. Chinese J Inorg Chem, 2019, 35: 923-929.
|
18 |
LIU Y, ZHAO C X, ZHAO X Y, et al. A selective N,N-dithenoyl-rhodamine based fluorescent probe for Fe3+ detection in aqueous and living cells[J]. J Environ Sci, 2020, 90: 180-188.
|
19 |
ZHANG Z J, WANG H, ZHANG H Y, et al. Selectively fluorescent sensing behavior of phenylaza-15-crown-5-triazolyl coumarin for Hg2+ and Fe3+ in alcohol and aqueous media respectively[J]. Chinese J Chem, 2013, 31(5): 598-602.
|
20 |
KALAIYARASAN G, JOSEPH J, KUMAR P. Phosphorus-doped carbon quantum dots as fluorometric probes for iron detection[J]. ACS Omega, 2020, 5: 22278-22288.
|
21 |
QIAN X, DENG S Y, CHEN X, et al. A highly stable, luminescent and layered zinc(Ⅱ)-MOF: iron(Ⅲ)/copper(Ⅱ) dual sensing and guest-assisted exfoliation[J]. Chinese Chem Lett, 2020, 31: 2211-2214.
|
22 |
CHEN G, LAN H H, CAI S L, et al. Stable hydrazone-linked covalent organic frameworks containing O,N,O'-chelating sites for Fe(Ⅲ) detection in water[J]. ACS Appl Mater Interfaces, 2019, 11(13): 12830-12837.
|
23 |
何玉倩, 赵冰, 阚伟, 等. 基于激发态分子内质子转移(ESIPT)和聚集诱导发光(AIE)活性的菲并咪唑Fe3+荧光探针及细胞成像研究[J]. 有机化学, 2019, 39(11): 3250-3257.
|
|
HE Y Q, ZHAO B, KAN W, et al. An excited-state intramolecular proton transfer (ESIPT) plus aggregation induced emission (AIE) phenanthro [9,10-d] imidazole- based fluorescence probe for detection of Fe3+ in living cells[J]. Chinese J Org Chem, 2019, 39(11): 3250-3257.
|
24 |
SHORTREED M, KOPELMAN R, KUHN M, et al. Fluorescent fiber-optic calcium sensor for physiological measurements[J]. Anal Chem, 1996, 68(8): 1414-1418.
|