[1] 陈明, 孙敬志, 秦安军, 等. 聚集诱导发光特性的杂环分子体系研究进展[J]. 科学通报, 2016, 61 (3): 304-314. CHEN M, SUN J Z, QIN A J, et al. Progress on heterocycle-based luminogens with aggregation-induced emission characteristics[J]. Chinese Sci Bull, 2016, 61(3): 304-314. [2] 陈晓红, 王允中, 张永明, 等. 非典型发光化合物的簇聚诱导发光[J]. 化学进展, 2019, 31(11): 1560-1575. CHEN X H, WANG Y Z, ZHANG Y M, et al. Clustering-triggered emission of nonconventional luminophores[J]. Prog Chem, 2019, 31(11): 1560-1575. [3] 刘志洋, 赵征, 张浩可, 等. 聚集诱导发光[J]. 科学观察, 2019, 14(6): 40-43. LIU Z Y, ZHAO Z, ZHANG H K, et al. Aggregation induced emission[J]. Sci Focus, 2019, 14(6): 40-43. [4] QIU Z J, LIU X L, LAM J, et al. The marriage of aggregation-induced emission with polymer science[J]. Macromol Rapid Commun, 2019, 40: 1800568-1800583. [5] FENG Y B, BAI T, YAN H X, et al. High fluorescence quantum yield based on the through-space conjugation of hyperbranched polysiloxane[J]. Macromolecules, 2019, 52: 3075-3082. [6] ZHAO E G, LAM J, MENG L M, et al. Poly[(maleic anhydride)-alt-(vinyl acetate)]: a pure oxygenic nonconjugated macromolecule with strong light emission and solvatochromic effect[J]. Macromolecules, 2015, 48: 64-71. [7] ZHOU Q, CAO B Y, ZHU C X, et al. Clustering-triggered emission of nonconjugated polyacrylonitrile[J]. Small, 2016, 12(47): 6586-6592. [8] ZHANG Q, MAO Q Y, SHANG C, et al. Simple aliphatic oximes as nonconventional luminogens with aggregation-induced emission characteristics[J]. J Mater Chem C, 2017, 5: 3699-3705. [9] ZHAO Z H, CHEN X H, WANG Q, et al. Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation[J]. Polym Chem, 2019, 10: 3639-3646. [10] NIU S, YAN H X, CHEN Z Y, et al. Water-soluble blue fluorescence-emitting hyperbranched polysiloxanes simultaneously containing hydroxyl and primary amine groups[J]. Macromol Rapid Commun, 2016, 37: 136-142. [11] LEE W I, BAE Y J, BARD A J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles[J]. J Am Chem Soc, 2004, 126(27): 8358-8539. [12] GONG Y Y, TAN Y Q, MEI J, et al. Room temperature phosphorescence from natural products: crystallization matters[J]. Sci China Chem, 2013, 56(9): 1178-1182. [13] DU Y Q, YAN H X, HUANG W, et al. Unanticipated strong blue photoluminescence from fully biobased aliphatic hyperbranched polyesters[J]. ACS Sustainable Chem Eng, 2017, 5: 6139-6147. [14] DU Y Q, FENG Y B, YAN H X, et al. Fluorescence emission from hyperbranched polycarbonate without conventional chromophores[J]. J Photochem Photobiol, A, 2018, 364: 415-423. [15] MIAO X P, LIU T, ZHANG C, et al. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms[J]. Phys Chem Chem Phys, 2016, 18: 4295-4299. [16] YUAN L Y, YAN H X, BAI L H, et al. Unprecedented multicolor photoluminescence from hyperbranched poly(amino ester)s[J]. Macromol Rapid Commun, 2019, 40(17): 1800658-1800664. [17] DU Y Q, BAI T, YAN H X, et al. A simple and convenient route to synthesize novel hyperbranched poly(amine ester) with multicolored fluorescence[J]. Polymer, 2019, 185: 121771-121781. [18] CHEN X H, LIU X D, LEI J L, et al. Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes[J]. Mol Syst Des Eng, 2018, 3: 364-375. [19] YE R Q, LIU Y Y, ZHANG H K, et al. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings[J]. Polym Chem, 2017, 8: 1722-1727. [20] ZHOU Q, WANG Z Y, DOU X Y, et al. Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers[J]. Mater Chem Front, 2019, 3: 257-264. [21] WANG R B, YUAN W Z, ZHU X Y. Aggregation-induced emission of non-conjugated poly(amido amine)s: discovering, luminescent mechanism understanding and bioapplication[J]. Chinese J Polym Sci, 2015, 33 (5): 680-687. [22] PASTER-PEREZ L, CHEN Y, SHEN Z,et al. Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and pH-effects[J]. Macromol Rapid Commun, 2007, 28: 1404-1409. [23] 谢庆兰, 张增佑, 王真, 等. 羧酸和环氧化合物加成酯化反应的新型催化剂的研究[J]. 催化学报, 1980, 1(2): 149-153. XIE Q L, ZHANG Z Y, WANG Z, et al. Investigation of novel catalyst for addition-esterification reaction between carboxylic acids and epoxides[J]. Chinese J Catal, 1980, 1(2): 149-153. [24] 廖仁安, 谢庆兰, 魏东, 等. 羧酸和环氧化合物加成酯化反应动力学的研究[J]. 催化学报, 1981, 2(2): 92-99. LIAO R A, XIE Q L, WEI D, et al. Study on kinetics of addition-esterification reaction between carboxylic acids and epoxides[J]. Chinese J Catal, 1981, 2(2): 92-99. [25] 刘福安, 林英杰, 衣保华, 等. 羧酸与环氧化合物加成酯化的高分子催化剂聚氯乙烯-三氯化铝硫酸铁[J]. 吉林大学学报理学版, 1987, 4: 79-82. LIU F A, LIN Y J, YI B H, et al. A study on the polymer protected catalyst PVC-AlCl3/Fe2(SO4)3 used in the additive esterification reaction between carboxylic acids and epoxides[J]. J Jilin Univ: Sci Ed, 1987, 4: 79-82. [26] HUANG J F, LUO H M, LIANG C D, et al. Hydrophobic Brønsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence[J]. J Am Chem Soc, 2005, 127: 12784-12785. [27] SHANG C, WEI N, ZHUO H M, et al. Highly emissive poly(maleic anhydride-alt-vinylpyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence[J]. J Mater Chem C, 2017, 5: 8082-8090. [28] BAI L H, YAN H X, FENG Y B, et al. Multi-excitation and single color emission carbon dots doped with silicon and nitrogen: synthesis, emission mechanism, Fe3+ probe and cell imaging[J]. Chem Eng J, 2019, 373: 963-972. [29] BAI L H, YAN H X, BAI T, et al. High fluorescent hyperbranched polysiloxane containing β-cyclodextrin for cell imaging and drug delivery[J]. Biomacromolecules, 2019, 20: 4230-4240. [30] WANG Y Z, CHEN B, CHEN X H, et al. Emission and emissive mechanism of nonaromatic oxygen clusters[J]. Macromol Rapid Commun, 2018, 39: 1800528-1800534. |