应用化学 ›› 2021, Vol. 38 ›› Issue (6): 637-650.DOI: 10.19894/j.issn.1000-0518.200300
黄晓桐, 陈颖欣, 朱泽滨, 周丽华*
收稿日期:
2020-10-03
修回日期:
2021-01-06
发布日期:
2021-08-01
通讯作者:
*E-mail:qhzhoulh@gdut.edu.cn
基金资助:
HUANG Xiao-Tong, CHEN Ying-Xin, ZHU Ze-Bin, ZHOU Li-Hua*
Received:
2020-10-03
Revised:
2021-01-06
Online:
2021-08-01
Supported by:
摘要: 抗坏血酸(Ascorbic Acid, AA)是一种人们熟知的生物小分子,参与维系机体内各生理及生化过程的正常进行。 许多研究表明,多种疾病如贫血、痛风及动脉粥样硬化等与其浓度变化相关。 AA对体内诸多生物分子的吸收代谢及合成过程具有的重要影响,在保健品、食品、化妆品及药物制剂等领域具有广泛应用。 AA检测方法众多,其中,光谱分析法具备有快速、低成本和易于操作的优势。 平均直径小于100 nm的纳米材料在光谱分析法中起到至关重要的作用。 本文围绕量子点、金属纳米团簇/颗粒、纳米笼/棒/纤维材料、纳米片材料在内的几种纳米材料采用光谱分析法,尤其是荧光光谱法和紫外光谱法检测AA的研究现状进行介绍,同时讨论了不同种纳米材料的检测优势及存在问题。
中图分类号:
黄晓桐, 陈颖欣, 朱泽滨, 周丽华. 基于纳米材料光谱分析法检测抗坏血酸的研究进展[J]. 应用化学, 2021, 38(6): 637-650.
HUANG Xiao-Tong, CHEN Ying-Xin, ZHU Ze-Bin, ZHOU Li-Hua. Research Progress on Detection of Ascorbic Acid by Nanomaterial-Based Spectral Analysis Method[J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 637-650.
[1] KHALID I, ALAM K, KHATTAK M M A K. Biological significance of ascorbic acid (vitamin C) in human health-a review[J]. Pakist J Nutr, 2004, 3(1): 374-379. [2] NAM C M, OH K W, LEE K H,et al. Vitamin C intake and risk of ischemic heart disease in a population with a high prevalence of smoking[J]. J Am Coll Nutr, 2003, 22(5): 372-378. [3] DHARA K, MAHAPATRA D R. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection[J]. Anal Biochem, 2019, 586: 113415. [4] MAGRI A, GERMANO G, LORENZATO A, et al. High-dose vitamin C enhances cancer immunotherapy[J]. Sci Transl Med, 2020, 12(532): eaay8707. [5] LEVINE M, WANG Y H, PADAYATTY S J, et al. A new recommended dietary allowance of vitamin C for healthy young women[J]. Proc Natl Acad Sci USA, 2001, 98(17): 9842-9846. [6] WAWRZYNIAK J, RYNIECKI A, ZEMBRZUSKI W. Application of voltammetry to determine vitamin C in apple juices[J]. IEEE Trans Appl Supercond, 2005, 18(2): 672-676. [7] KONG W H, WU D, LI G L, et al. A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy[J]. Talanta, 2017, 165: 677-684. [8] ZHU S Y, LEI C H, GAO Y, et al. Simple and label-free fluorescence detection of ascorbic acid in rat brain microdialysates in the presence of catecholamines[J]. New J Chem, 2018, 42(5): 3851-3856. [9] KHALILZADEH M A, BORZOO M. Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid[J]. J Food Drug Anal, 2016, 24(4): 796-803. [10] SUNTORNSUK L, GRITSANAPUM W, NILKAMHANK S, et al. Quantitation of vitamin C content in herbal juice using direct titration[J]. J Pharm Biomed, 2002, 28(5): 849-855. [11] VERDINI R A, LAGIER C M. Voltammetric iodometric titration of ascorbic acid with dead-stop end-point detection in fresh vegetables and fruit samples[J]. J Agr Food Chem, 2000, 48(7): 2812-2817. [12] NOROOZIFAR M, KHORASANI-MOTLAGH M. Solid-phase iodine as an oxidant in flow injection analysis: determination of ascorbic acid in pharmaceuticals and foods by background correction[J]. Talanta, 2003, 61(2): 173-179. [13] SHAKYA R, NAVARRE D A. Rapid screening of ascorbic acid, glycoalkaloids, and phenolics in potato using high-performance liquid chromatography[J]. J Agric Food Chem, 2006, 54(15): 5253-5260. [14] ROSS M A. Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography[J]. J Chromatogr B, 1994, 657(1): 197-200. [15] 郭荣贵, 于丽敏, 刘淑凤, 等. 纳米材料理化性能分析方法综述[J]. 分析仪器, 2018(6): 9-15. GUO R G, YU L M, LIU S F, et al. Overview of physicochemical analysis methods for nanomaterials[J]. Anal Instrum, 2018(6): 9-15. [16] CLEMENS BURDA, CHEN X B, NARAYANA R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev, 2005, 105(27): 1025-1102. [17] 杨凯, 刘昶, 纪艳超, 等. 量子点研究进展及其在胃癌诊疗中的应用前景[J]. 胃肠病学和肝病学杂志, 2015, 24(2): 223-225. YANG K, LIU C, JI Y C, et al. Study of quantum dots and the prospect of its application in the diagnosis and treatment of gastric cancer[J]. Chinese J Gastroenterol Hepatol, 2015, 24(2): 223-225. [18] ZHU J, ZHAO Z J, LI J J, et al. Fluorescent detection of ascorbic acid based on the emission wavelength shift of CdTe quantum dots [J]. J Lumin, 2017, 192: 47-55. [19] 鹿霞, 钟文英, 于俊生. 高量子产率水溶性CdTe量子点的制备与表征[J]. 分析试验室, 2009, 28(01): 36-40. LU X, ZHONG W Y, YU J S. Synthesis and characterization of high quantum yield CdTe quantum dots in aqueous phase[J]. Chinese J Anal Lab, 2009, 28(01): 36-40. [20] GANIGA M, CYRIAC J. An ascorbic acid sensor based on cadmium sulphide quantum dots[J]. Anal Bioanal Chem, 2016, 408(14): 3699-3706. [21] WANG J, PENG X, LI D Q, et al. Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid[J]. Microchim Acta, 2017, 185(1): 1-8. [22] MIR I A, BHAT M A, MUHAMMAD Z, et al. AIS and AIS@ZnS core-shell quantum dots towards bioanalytes[J]. J Alloys Compd, 2019, 811: 151688. [23] XUE G, YUE Z, BING Z, et al. Determination of ascorbic acid using CdTe quantum dots immobilized on eggshell membrane surface as a turn-on fluorescence probe[J]. J Lumin, 2016, 180: 146-150. [24] SHAHEEN A, ARIF R, SHARMA D, et al. Microwave-mediated synthesis of surface-active ionic liquid-capped ZnS quantum dots:morphological studies and their applicability for fluorometric sensing of ascorbic acid[J]. Appl Phys A, 2020, 126: 777 . [25] HU L Z, ZHANG Q, GAN X Y, et al. Switchable fluorescence of MoS2 quantum dots: a multifunctional probe for sensing of chromium(VI), ascorbic acid, and alkaline phosphatase activity[J]. Anal Bioanal Chem, 2018, 410(28): 7551-7557. [26] RAO H N, GAO Y, GE H W, et al. An “on-off-on” fluorescent probe for ascorbic acid based on Cu-ZnCdS quantum dots and α-MnO2 nanorods[J]. Anal Bioanal Chem, 2017, 409(19): 4517-4528. [27] FANG Y X, GUO S J,Li D. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles[J]. ACS Nano, 2012, 6(1): 400-409. [28] KONG W H, WU D, LI G L, et al. A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy[J]. Talanta, 2017, 165: 677-684. [29] CHANDRA S, SINGH V K, YADAV P K, et al. Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample[J]. Anal Chem Acta, 2019, 1054: 145-156. [30] MIAO H, WANG L, ZHUO Y, et al. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice[J]. Biosens Bioelectron, 2016, 86: 83-89. [31] BANDI R, DEVULAPALI N P, DADIGALA R, et al. Facile conversion of toxic cigarette butts to N,S-codoped carbon dots and their application in fluorescent film, security ink, bioimaging, sensing and logic gate operation[J]. ACS Omega, 2018, 3(10): 13454-13466. [32] PARK Y, YOO J, LIM B, et al. Improving functionality of carbon nanodots: doping and surface functionalization[J]. J Mater Chem A, 2016, 4(30): 11582-11603. [33] 史燕妮, 李敏, 陈师, 等. 碳量子点及其性能研究进展[J]. 高分子通报, 2016(1): 39-46. SHI Y N, LI M, CHEN S, et al. Progresson the carbon quantum dots and their properties[J]. Polym Bull, 2016(1): 39-46. [34] DU Y, GUO S J. Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications[J]. Nanoscale, 2016, 8(5): 2532-2543. [35] DU F F, GONG X J, LU W J, et al. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging[J]. Talanta, 2018, 179: 554-562. [36] DUAN J X, YU J, FENG S L, et al. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid[J]. Talanta, 2016, 153: 332-339. [37] ZHANG Y H, FANG X, ZHAO H, et al. A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots[J]. Talanta, 2018, 181: 318-325. [38] LUO X L, ZHANG W G, HAN Y, et al. N,S co-doped carbon dots based fluorescent “on-off-on” sensor for determination of ascorbic acid in common fruits[J]. Food Chem, 2018, 258: 214-221. [39] FONG J F Y, CHIN S F,NG S M. A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe[J]. Biosens Bioelectron, 2016, 85: 844-852. [40] LI L B, WANG C, LUO J X, et al. Fe3+-functionalized carbon quantum dots: a facile preparation strategy and detection for ascorbic acid in rat brain microdialysates[J]. Talanta, 2015, 144: 1301-1307. [41] WEI Z N, LI H Q, LIU S B, et al. Carbon dots as fluorescent/colorimetric probes for real-time detection of hypochlorite and ascorbic acid in cells and body fluid[J]. Anal Chem, 2019, 91(24): 15477-15483. [42] LIN L P, LUO Y X, TSAI P Y, et al. Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications[J]. TrAC-Trend Anal Chem, 2018, 103: 87-101. [43] TIAN T, ZHONG Y P, DENG C, et al. Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate[J]. Talanta, 2017, 162: 135-142. [44] LIU Y S , WU P , WU X Y , et al. Nitrogen and copper(II) co-doped carbon dots for applications in ascorbic acid determination by non-oxidation reduction strategy and cellular imaging[J]. Talanta, 2020, 210: 120649. [45] ZHANG X L, WEI C B, LI Y, et al. Shining luminescent graphene quantum dots: ynthesis, physicochemical properties, and biomedical applications[J]. TrAC-Trend Anal Chem, 2019, 116: 109-121. [46] 黄启同, 林小凤, 李飞明, 等. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614. HUANG Q T, LIN X F, LI F M, et al. Synthesis and applications of carbon dots[J]. Prog Chem, 2015, 27(11): 1604-1614. [47] LIU X T, NA W D, LIU H, et al. Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid[J]. Biosens Bioelectron, 2017, 98: 222-226. [48] SAFARDOUST-HOJAGHAN H, AMIRI O, HASSANPOUR M, et al. S,N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: design, characterization and performance[J]. Food Chem, 2019, 295: 530-536. [49] LIU R, YANG R, QU C J, et al. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum[J]. Sens Actuat B-Chem, 2017, 241: 644-651. [50] LIU H, LI N, ZHANG H Q, et al. A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots[J]. Talanta, 2018, 189: 190-195. [51] ACHADU O J, NYOKONG T. Application of graphene quantum dots decorated with TEMPO-derivatized zinc phthalocyanine as novel nanoprobes: probing the sensitive detection of ascorbic acid[J]. New J Chem, 2016, 40(10): 8727-8736. [52] 魏建红, 官建国, 袁润章. 金属纳米粒子的制备与应用[J]. 武汉理工大学学报, 2001, 23(3): 1-4. WEI J H, GUAN J G, YUAN R Z.Preparation and application of metal nanoparticles[J]. J Wuhan Univ Technol, 2001, 23(3): 1-4. [53] 翟宏菊, 戴晓威, 曹爽, 等. 金纳米粒子的合成、性质及其应用新进展[J]. 吉林师范大学学报(自然科学版), 2017, 38(2): 13-16. ZHAI H J, DAI X W, CAO S, et al. New progress of synthesis,propertiesand applications of gold nanoparticles[J]. J Jilin Univ(Nat Sci Ed), 2017, 38(2): 13-16. [54] ROSTAMI S, MEHDINIA A, JABBARI A. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid[J]. Spectrochim Acta A, 2017, 180: 204-210. [55] CHEN P P, YAN S X, SAWYER E, et al. Rapid and simple detection of ascorbic acid and alkaline phosphatase via controlled generation of silver nanoparticles and selective recognition[J]. Analyst, 2019, 144(4): 1147-1152. [56] REZAEI B, SHAHSHAHANIPOUR M, ENSAFI A A. In situ production of silver nanoparticles for high sensitive detection of ascorbic acid via inner filter effect[J]. Mat Sci Eng C, 2017, 71: 663-668. [57] LIU J S, WANG L Z, BAO H J. A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence[J]. Anal Bioanal Chem, 2019, 411(4): 877-883. [58] ZHU G, SINGH L, WANG Y, et al. Tapered optical fiber-based LSPR biosensor for ascorbic acid detection[J]. Photonic Sens, 2020: 1-17. [59] SUI N, LIU F Y, LI T L, et al. Colorimetric detection of ascorbic acid based on the trigger of gold nanoparticles aggregation by Cr(III) reduced from Cr(VI)[J]. Anal Sci, 2017, 33(8): 963-967. [60] ANJALI DEVI J S, SALINI S, ANULEKSHMI A H, et al. Fe (III) ion modulated -DOPA protected gold nanocluster probe for fluorescence turn on sensing of ascorbic acid[J]. Sens Actuat B, 2017, 246: 943-951. [61] MO Q C, LIU F, GAO J, et al. Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters[J]. Anal Chim Acta, 2018, 1003: 49-55. [62] LIU S Y, PANG S. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters[J]. Microchim Acta, 2018, 185(9): 426. [63] TAN Q Q, KONG W S, SUN H, et al. Fluorometric turn-on detection of ascorbic acid based on controlled release of polyallylamine-capped gold nanoclusters from MnO2 nanosheets[J]. Microchim Acta, 2019, 186(5): 282. [64] LI N, HE Y, GE Y L, et al. "Turn-off-on" fluorescence switching of ascorbic acid-reductive silver nanoclusters: a sensor for ascorbic acid and arginine in biological fluids[J]. J Fluoresc, 2017, 27(1): 293-302. [65] YU J N, YANG W T, XING S G, et al. Blended gold/MnO2@BSA nanoparticles for fluorometric and magnetic resonance determination of ascorbic acid[J]. Microchim Acta, 2019, 186(2): 89. [66] MENG H J, YANG D Q, TU Y F, et al. Turn-on fluorescence detection of ascorbic acid with gold nanolcusters[J]. Talanta, 2017, 165: 346-350. [67] CHOLULA-DIAZ J L, LOMELI-MARROQUIN D, PRAMANICK B, et al. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS[J]. Colloid Surf B, 2018, 163: 329-335. [68] RAO H B, GE H W, LU Z W, et al. Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid[J]. Microchim Acta, 2016, 183(5): 1651-1657. [69] LIU C Y, CAI Y Y, WANG J, et al. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing[J]. ACS Appl Mater Interfaces, 2020, 12(38): 42521-42530. [70] XIE K, QIN X T, WANG X Z, et al. Carbon nanocages as supercapacitor electrode materials[J]. Adv Mater, 2012, 24(3): 347-352. [71] BI J R, WANG H T, KAMAL T, et al. A fluorescence turn-off-on chemosensor based on carbon nanocages for detection of ascorbic acid[J]. RSC Adv, 2017, 7(48): 30481-30487. [72] CHEN S H, CHI M Q, YANG Z Z, et al. Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of H2O2 and ascorbic acid[J]. Inorg Chem Front, 2017, 4(10): 1621-1627. [73] JIANG Y Z, SONG N, WANG C, et al. A facile synthesis of Fe3O4/nitrogen-doped carbon hybrid nanofibers as a robust peroxidase-like catalyst for the sensitive colorimetric detection of ascorbic acid[J]. J Mater Chem B, 2017, 5(27): 5499-5505. [74] HAN X Y, CHEN Z H, FAN Q X, et al. Manganese(II)-doped zinc/germanium oxide nanoparticles as a viable fluorescent probe for visual and time-resolved fluorometric determination of ascorbic acid and its oxidase[J]. Microchim Acta, 2019, 186(7): 466. [75] NIE Q Y, CAI Q Y, XU H H, et al. A facile colorimetric method for highly sensitive ascorbic acid detection by using CoOOH nanosheets[J]. Anal Methods, 2018, 10(22): 2623-2628. [76] CHEN P, ZHONG H, WANG X, et al. A label-free colorimetric strategy for facile and low-cost sensing of ascorbic acid using MnO2 nanosheets[J]. Anal Methods, 2019, 11(11): 1469-1474. [77] ZHAO Y Y, LI L, YU R Q, et al. CoOOH-induced synthesis of fluorescent polydopamine nanoparticles for the detection of ascorbic acid[J]. Anal Methods, 2017, 9(37): 5518-5524. [78] JI D Y, DU Y H, MENG H M, et al. A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine[J]. Sens Actuat B, 2018, 256: 512-519. [79] DING Y Q, ZHAO J F, LI B, et al. The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid[J]. Microchim Acta, 2018, 185(2): 131. [80] HE L Y, WANG F Y, CHEN Y, et al. Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase-like activity of MnO2 nanosheets[J]. J Lumin, 2018, 33(1): 145-152. [81] HUANG W, DENG Y Q, HE Y. Visual colorimetric sensor array for discrimination of antioxidants in serum using MnO2 nanosheets triggered multicolor chromogenic system[J]. Biosens Bioelectron, 2017, 91: 89-94. [82] LIU S G, LUO D, HAN L, et al. A hybrid material composed of guanine-rich single stranded DNA and cobalt(III) oxyhydroxide (CoOOH) nanosheets as a fluorescent probe for ascorbic acid via formation of a complex between G-quadruplex and thioflavin T[J]. Microchim Acta, 2019, 186(3): 156. [83] QU F L, PEI H M, KONG R M, et al. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets[J]. Talanta, 2017, 165: 136-142. [84] WANG H T, NA X K, LIU S, et al. A novel “turn-on” fluorometric and magnetic bi-functional strategy for ascorbic acid sensing and in vivo imaging via carbon dots-MnO2 nanosheet nanoprobe[J]. Talanta, 2019, 201: 388-396. [85] LI G L, KONG W H, ZHAO M, et al. A fluorescence resonance energy transfer (FRET) based “turn-on” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening[J]. Biosens Bioelectron, 2016, 79: 728-735. [86] ZHANG L M, QIN J, YANG Q, et al. Redox modulated fluorometric sensing of ascorbic acid by using a hybrid material composed of carbon dots and CoOOH nanosheets[J]. Mikrochim Acta, 2019, 186(6): 368. [87] HAN Q X, DONG Z, TANG X L, et al. A ratiometric nanoprobe consisting of up-conversion nanoparticles functionalized with cobalt oxyhydroxide for detecting and imaging ascorbic acid[J]. J Mater Chem B, 2017, 5(1): 167-172. [88] LU Q J, CHEN X G, LIU D, et al. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system[J]. Microchim Acta, 2019, 186(2): 72. [89] DING Y, ZHAO M G, YU J T, et al. Preparation of NiMn2O4/C necklace-like microspheres as oxidase mimetic for colorimetric determination of ascorbic acid[J]. Talanta, 2020, 219: 121299. [90] 龙威, 黄荣华. 石墨烯的化学奥秘及研究进展[J]. 洛阳理工学院学报(自然科学版), 2012, 22(01): 1-4. LONG W,HUANG R H. The chemical secret and research progress of graphene[J]. J Luoyang Inst Sci Technol (Nat Sci Ed) , 2012, 22(01): 1-4. [91] FAN S, ZHAO M, DING L, et al. Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid[J]. Biosens Bioelectron, 2017, 89(2): 846-852. [92] LV W, QIN W, CHEN Y, et al. Fabrication of Co3O4 NPs-graphene oxide nanocomposites as an efficient catalyst towards oxygen reduction and its catalytic applications[J]. J Colloid Interface Sci, 2019, 538: 125-131. [93] DARABDHARA G, SHARMA B, DAS M R, et al. Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection.[J]. Sens Actuat B, 2017, 238: 842-851. [94] ARUMUGAM N, KIM J. Quantum dots attached to graphene oxide for sensitive detection of ascorbic acid in aqueous solutions[J]. Mat Sci Eng C, 2018, 92: 720-725. [95] CHEN L, WANG X, SONG L, et al. Research development on graphitic carbon nitride nanosheets[J]. Adv Mater Chem, 2015, 03(02): 13-23. [96] GUO X R, YUE G Q, HUANG J Z, et al. Label-free simultaneous analysis of Fe(III) and ascorbic acid using fluorescence switching of ultrathin graphitic carbon nitride nanosheets[J]. ACS Appl Mater Inter, 2018, 10(31): 26118-26127. [97] WANG S. G-C3N4 nanosheets as “on-off-on” selective fluorescence biosensor to detect ascorbic acid via redox reaction[J]. J Alloy Compd, 2019, 770: 952-958. [98] LV Y X, JIANG C Y, HU K, et al. In-situ growth of cobalt oxyhydroxide on graphitic-phase C3N4 nanosheets for fluorescence turn-on detection and imaging of ascorbic acid in living cells[J]. Microchim Acta, 2019, 186(6): 360. |
[1] | 李慧慧, 姚开胜, 赵亚南, 范李娜, 田钰琳, 卢伟伟. 离子液体调控合成Pt-Pd双金属纳米材料及其催化氨硼烷水解释氢[J]. 应用化学, 2023, 40(4): 597-609. |
[2] | 柳小虎, 赖小娟, 曹红燕, 王婷婷, 党志强. 起泡剂/稳泡剂/SiO2复合泡沫缓速酸液体系协同增效性能[J]. 应用化学, 2023, 40(1): 91-99. |
[3] | 杜慧, 姚晨阳, 彭皓, 姜波, 李顺祥, 姚俊烈, 郑方, 杨方, 吴爱国. 过渡金属掺杂磁性纳米粒子在生物医学领域中的研究进展[J]. 应用化学, 2022, 39(3): 391-406. |
[4] | 赵春梅, 周秀苗, 金茜茜, 王雨杭, 党祎静. 基于马鞍形环八四噻吩的复合纳米材料的制备及发光性能[J]. 应用化学, 2022, 39(02): 283-288. |
[5] | 刘娇, 邹鹏飞, 李平, 张潇, 王欣欣, 高媛媛, 李莉莉. 多肽类自组装纳米材料对抗细菌耐药的研究进展[J]. 应用化学, 2021, 38(5): 546-558. |
[6] | 刘林昌, 郭亚君, 朱红林, 马静静, 李忠义, 水淼, 郑岳青. 负载型超细纳米材料催化氨硼烷水解制氢的研究进展[J]. 应用化学, 2021, 38(11): 1405-1422. |
[7] | 高明, 赵开东, 刘祥永, 金元哲. 二硫化钼纳米材料的制备及其对心肌细胞的保护作用[J]. 应用化学, 2020, 37(9): 1010-1021. |
[8] | 蒙阳, 杨婵, 彭娟. 基于铁、钴、镍金属磷化物纳米催化剂的碱性条件下电解水制氢的研究进展[J]. 应用化学, 2020, 37(7): 733-745. |
[9] | 樊哲,张盛盛,唐家豪,范萍. 分级纳米材料的结构、制备及其应用[J]. 应用化学, 2020, 37(5): 489-501. |
[10] | 王春丽,孙连山,钟鸣,王立民,程勇. 过渡金属及其化合物应用于锂硫电池的研究进展[J]. 应用化学, 2020, 37(4): 387-404. |
[11] | 王秋实, 贺军辉. 磁性硫化铜复合纳米材料的合成及其对水中汞离子的特异性吸附[J]. 应用化学, 2020, 37(11): 1316-1323. |
[12] | 苏风梅, 张达, 梁风. 低温等离子体制备与改性纳米催化材料的研究进展[J]. 应用化学, 2019, 36(8): 882-891. |
[13] | 王猛, 张彬, 韦德泉, 梁兰菊, 宗明吉, 刘凤收. 不同光滑度立方体氧化铁对液晶电光性能的改善[J]. 应用化学, 2019, 36(6): 690-697. |
[14] | 王猛,王岩,韦德泉,梁兰菊,王岳平,张彬. 松果状纳米氧化铁对液晶电光性能的影响[J]. 应用化学, 2019, 36(5): 578-584. |
[15] | 苏哲,秦文璟,白磊,孙鹏飞,余昌敏,范曲立,李林. 近红外二区荧光探针在生物成像领域的研究进展[J]. 应用化学, 2019, 36(2): 123-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||