[1] BASAK S, LU C, BASAK A. Post-translational protein modifications of rare and unconventional types: implications in functions and diseases[J]. Curr Med Chem, 2016, 23(7): 714-745. [2] STAVENHAGEN K, GAHOUAL R, DOMINGUEZ VEGA E, et al. Site-specific N- and O-glycosylation analysis of atacicept[J]. mAbs, 2019, 11(6): 1053-1063. [3] BAE J, KIM S J, LEE S E, et al. Comprehensive proteome and phosphoproteome profiling shows negligible influence of RNAlater on protein abundance and phosphorylation[J]. Clin Proteomics, 2019, 16: 18. [4] SPIRO R G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology, 2002, 12(4): 43-56. [5] WALSH G, JEFFERIS R. Post-translational modifications in the context of therapeutic proteins[J]. Nat Biotechnol, 2006, 24(10): 1241-1252. [6] JIA X G, DEMCHENKO A V. Intramolecular glycosylation[J]. Beilstein J Org Chem, 2017, 13: 2028-2048. [7] PALANIAPPAN K K, BERTOZZI C R. Chemical glycoproteomics[J]. Chem Rev, 2016, 116(23): 14277-14306. [8] EICHLER J, KOOMEY M. Sweet new roles for protein glycosylation in prokaryotes [J]. Trends Microbiol, 2017, 25(8): 662-672. [9] SONG E, MECHREF Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment[J]. Biomark Med, 2015, 9(9): 835-844. [10] ADAMCZYK B, THARMALINGAM T, RUDD P M. Glycans as cancer biomarkers[J]. Biochim Biophys Acta, 2012, 1820(9): 1347-1353. [11] MOASSER M M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis[J]. Oncogene, 2007, 26(45): 6469-6487. [12] 赵群, 张丽华, 张玉奎. 蛋白质组学技术前沿进展[J]. 应用化学, 2018, 35(9): 977-983. ZHAO Q, ZHANG L H, ZHANG Y K. Recent advances in proteomics[J]. Chinese J Appl Chem, 2018, 35(9): 977-983. [13] SAJID M S, JABEEN F, HUSSAIN D, et al. Boronic acid functionalized fibrous cellulose for the selective enrichment of glycopeptides[J]. J Sep Sci, 2020, 43(7): 1348-1355. [14] YAO J, WANG J, SUN N, et al. One-step functionalization of magnetic nanoparticles with 4-mercaptophenylboronic acid for a highly efficient analysis of N-glycopeptides[J]. Nanoscale, 2017, 9(41): 16024-16029. [15] HIRABAYASHI J, ARATA Y, KASAI K. Glycome project: concept, strategy and preliminary application to caenorhabditis elegans[J]. Proteomics, 2001, 1(2): 295-303. [16] EISENHABER B, EISENHABER F. Prediction of posttranslational modification of proteins from their amino acid sequence[J]. Methods Mol Biol, 2010, 609: 365-384. [17] CUI Y, YANG K, TABANG D N, et al. Finding the sweet spot in ERLIC mobile phase for simultaneous enrichment of N-glyco and phosphopeptides[J]. J Am Soc Mass Spectrom, 2019, 30(12): 2491-2501. [18] OHTA Y, KAMEDA K, MATSUMOTO M, et al. Rapid glycopeptide enrichment using cellulose hydrophilic interaction/reversed-phase stagetips[J]. Mass Spectrom, 2017, 6(1): A0061. [19] WOHLGEMUTH J, KARAS M, EICHHORN T, et al. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies[J]. Anal Biochem, 2009, 395(2): 178-188. [20] HE X M, LIANG X C, CHEN X, et al. High strength and hydrophilic chitosan microspheres for the selective enrichment of N-glycopeptides[J]. Anal Chem, 2017, 89(18): 9712-9721. [21] ZHANG L, MA S, CHEN Y, et al. Facile fabrication of biomimetic chitosan membrane with honeycomb-like structure for enrichment of glycosylated peptides[J]. Anal Chem, 2019, 91(4): 2985-2993. [22] SUN X, DONG J, LI J, et al. Facile preparation of polysaccharide functionalized macroporous adsorption resin for highly selective enrichment of glycopeptides[J]. J Chromatogr A, 2017, 1498: 72-79. [23] LI K, ZHAO B, YU Q, et al. Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides[J]. Mikrochim Acta, 2020, 187(6): 324. [24] FANG C, XIONG Z, QIN H, et al. One-pot synthesis of magnetic colloidal nanocrystal clusters coated with chitosan for selective enrichment of glycopeptides[J]. Anal Chim Acta, 2014, 841: 99-105. [25] 魏欣, 陈佳, 关明, 等. 共价有机框架材料在色谱分离,光学传感与样品前处理中的应用[J]. 分析化学, 2019, 47(11): 1721-1731. WEI X, CHEN J, GUAN M, et al. Application of covalent organic frameworks in chromatographic separation, optical sensing and sample pretreatment[J]. Chinese J Anal Chem, 2019, 47(11): 1721-1731. [26] MA Y F, YUAN F, ZHANG X H, et al. Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent-organic framework[J]. Analyst, 2017, 142(17): 3212-3218. [27] WANG H, JIAO F, GAO F, et al. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides[J]. J Mater Chem B, 2017, 5(22): 4052-4059. [28] DING F, CHU Z, ZHANG Q, et al. Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-glycopeptides[J]. Anal Chim Acta, 2019, 1057: 145-151. [29] LUO B, HE J, LI Z, et al. Glutathione-functionalized magnetic covalent organic framework microspheres with size exclusion for endogenous glycopeptide recognition in human saliva[J]. ACS Appl Mater Interfaces, 2019, 11(50): 47218-47226. [30] 张攀, 周奎, SOMBOON H, 等. 金属氧化物@金属有机骨架复合材料研究进展[J]. 应用化学, 2018, 35(4): 369-380. ZHANG P, ZHOU K, SOMBOON H, et al. Progress of metal oxide and metal-organic framework composite materials[J]. Chinese J Appl Chem, 2018, 35(4): 369-380. [31] XIONG Z, JI Y, FANG C, et al. Facile preparation of core-shell magnetic metal-organic framework nanospheres for the selective enrichment of endogenous peptides[J]. Chemistry, 2014, 20(24): 7389-7395. [32] JI Y, XIONG Z, HUANG G, et al. Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography[J]. Analyst, 2014, 139(19): 4987-4993. [33] ZHANG Y W, LI Z, ZHAO Q, et al. A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides[J]. Chem Commun (Camb), 2014, 50(78): 11504-11506. [34] WANG Y, WANG J, GAO M, et al. Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides[J]. Proteomics, 2017, 17(10): e1700005. [35] XIE Y, DENG C. Designed synthesis of a “one for two” hydrophilic magnetic amino-functionalized metal-organic framework for highly efficient enrichment of glycopeptides and phosphopeptides[J]. Sci Rep, 2017, 7(1): 1162. [36] LIU Q, XIE Y, DENG C, et al. One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides[J]. Talanta, 2017, 175: 477-482. [37] HU X, LIU Q, WU Y, et al. Magnetic metal-organic frameworks containing abundant carboxylic groups for highly effective enrichment of glycopeptides in breast cancer serum[J]. Talanta, 2019, 204: 446-454. [38] XIE Y, DENG C, LI Y. Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides[J]. J Chromatogr A, 2017, 1508: 1-6. [39] LI D, ZHANG J, XIE G, et al. A dual-zwitterion functionalized ultra-hydrophilic metal-organic framework with ingenious synergy for enhanced enrichment of glycopeptides[J]. Chem Commun, 2019, 55(93): 13967-13970. [40] MA W, XU L, LI X, et al. Cysteine-functionalized metal-organic framework: facile synthesis and high efficient enrichment of N-linked glycopeptides in cell lysate[J]. ACS Appl Mater Interfaces, 2017, 9(23): 19562-19568. [41] PAN Y, MA C, TONG W, et al. Preparation of sequence-controlled triblock copolymer-grafted silica microparticles by sequential-ATRP for highly efficient glycopeptides enrichment[J]. Anal Chem, 2015, 87(1): 656-662. [42] SHAO W, LIU J, LIANG Y, et al. “Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment[J]. Anal Bioanal Chem, 2018, 410(3): 1019-1027. [43] SHAO W, LIU J, YANG K, et al. Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment[J]. Talanta, 2016, 158: 361-367. [44] ZHANG B, YU R Z, YU Y H, et al. Lectin inspired polymers based on the dipeptide Ser-Asp for glycopeptide enrichment[J]. Analyst, 2018, 143(21): 5090-5093. [45] CAO W, HUANG J, JIANG B, et al. Highly selective enrichment of glycopeptides based on zwitterionically functionalized soluble nanopolymers[J]. Sci Rep, 2016, 6: 29776. [46] LIU J, YANG K, SHAO W, et al. Synthesis of zwitterionic polymer particles via combined distillation precipitation polymerization and click chemistry for highly efficient enrichment of glycopeptide[J]. ACS Appl Mater Interfaces, 2016, 8(34): 22018-22024. [47] SAJID M S, JOVCEVSKI B, PUKALA T L, et al. Fabrication of piperazine functionalized polymeric monolithic tip for rapid enrichment of glycopeptides/glycans[J]. Anal Chem, 2020, 92(1): 683-689. [48] ZHANG W, JIANG L, WANG D, et al. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides[J]. Anal Bioanal Chem, 2018, 410(25): 6653-6661. [49] ZHANG W, JIANG L, FU L, et al. Selective enrichment of glycopeptides based on copper tetra(N-carbonylacrylic) aminephthalocyanine and iminodiacetic acid functionalized polymer monolith[J]. J Sep Sci, 2019, 42(5): 1037-1044. |