[1] PHILIPP P, PETER J S, WOLFGANG S. A revolution in lighting[J]. Nat Mater, 2015, 14(5): 454-458. [2] HUANG X Y. New red phosphors enable white LEDs to show both high luminous efficacy and color rendering index[J]. Sci Bull, 2019, 64(13): 879-880. [3] CHO J, PARK J H, KIM J K, et al. White light-emitting diodes: history, progress, and future[J]. Laser Photon Rev, 2017, 11(2): 1600147-1600164. [4] HOUSER K W, WEI M C, DAVID A, et al. Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition[J]. Opt Express, 2013, 21(8): 10393-10411. [5] PIAO X Q, TAKASHI H, HIROMASA H, et al. Characterization and luminescence properties of Sr2Si5N8∶Eu2+ phosphor for white light-emitting-diode illumination[J]. Appl Phys Lett, 2006, 88(16): 161908-161910. [6] XIA Z G, XU Z H, CHEN M Y, et al. Recent developments in the new inorganic solid-state LED phosphors[J]. Dalton Trans, 2016, 28(28): 11201-11582. [7] YANG C T, XIE L J, XIAO Q L, et al. Ba1-xSrxMgSiO4∶Eu2+,Mn2+: a novel tunable single-matrix tricolor phosphor for WLED[J]. J Rare Earth, 2012, 30(2): 110-113. [8] GOLJA D, DEJENE F. Structural and photoluminescence characteristics of the single-host green-light-emitting T-phase Ba1.3Ca0.7SiO4∶Tb3+ phosphors for LEDs[J]. Chem Phys Lett, 2020, 16: 137122-137131. [9] FAN B, ZHOU W X, QI S M, et al. Eu3+-doped NaYGeO4: a novel red-emitting phosphors for ultraviolet or blue chips excited white LEDs[J]. J Solid State Chem, 2020, 283: 121158-121164. [10] WANG B, KONG Y C, CHEN Z K, et al. Thermal stability and photoluminescence of Mn2+ activated green-emitting feldspar phosphor SrAl2Si2O8∶Mn2+ for wide gamut w-LED backlight[J]. Opt Mater, 2020, 99(1): 109535 [11] ZHANG Y F, XIONG J, SHEN D Y, et al. Tunable luminescence evolution and ET behavior of Na3Sc2(PO4)3∶Ce3+/Tb3+/Eu3+ phosphors[J]. RSC Adv, 2019, 9: 1270-1277. [12] WU H Y, LI H M, JIANG L H, et al. Synthesis, structure and optical properties of novel thermally robust Dy3+-doped Ca9Sc(PO4)7 phosphors for NUV-excited white LEDs[J]. J Rare Earth, 2021, 39(3): 277-283. [13] ZHANG Y, ZHOU T S, LIU H, et al. Structure and luminescence properties of Sr9La(PO4)5(SiO4)F2∶Dy3+ single-component white-emitting phosphor for n-UV w-LEDs[J]. Opt Mater, 2018, 84: 689-693. [14] WANG Q, XIE M L, MIN X, et al. Synthesis, structural, and luminescence properties of Biocl∶Dy3+ single component white-light-emitting phosphor for n-UV w-LEDs[J]. Chem Phys Lett, 2019, 727(16): 72-77. [15] FERHI M, TOUMI S, HORCHANI-NAIFER K, et al. Single phase GdPO4∶Dy3+ microspheres blue, yellow and white light emitting phosphor[J]. J Alloys Compd, 2017, 714(15): 144-153. [16] KIM J S, JEON P E, PARK Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor[J]. Appl Phys Lett, 2004, 85(17): 3696-3698. [17] YANG F G, QIAO L, REN H K, et al. Synthesis and luminescence properties of color-tunable Dy3+/Eu3+∶CeAlON phosphors[J]. Ceram Int, 2017, 43(11): 8406-8410. [18] HAN B, DAI Y Z, ZHANG J, et al. Development of near-ultraviolet-excitable single-phase white-light-emitting phosphor KBaY(BO3)2∶Ce3+,Dy3+ for phosphor-converted white light-emitting-diodes[J]. Ceram Int, 2018, 44(12): 14803-14810. [19] LU M, ZHU C F, CHEN Z T, et al. Ce3+ and Dy3+ doped Ca3(P1-xBxO4)2 phosphors for white light-emitting applications[J]. J Alloys Compd, 2019, 775: 1044-1051. [20] RAMBABU U, BALAJI T, ANNAPURNA K, et al. Fluorescence spectra of Tm3+-doped rare earth oxychloride powder phosphors[J]. Mater Chem Phys, 1996, 43(2): 195-198. [21] HWANG M H, LEE E Y, HONG S H, et al. Preparation and luminescent properties of Ca5(PO4)3Cl∶Eu2+ phosphors by a solid-state reaction method[J]. J Electrochem Soc, 2009, 156(7): J185-J188. [22] CHIANG C H, LU Y M, FANG Y C, et al. Effects of deionized water modification of raw materials on properties of Ca6BaP4O17∶Eu2+ phosphate phosphors[J]. Ceram Int, 2018, 44(15): 18376-18381. [23] QIAO J W, NING L X, MOLOKEEV M S, et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence[J]. J Am Ceram Soc, 2018, 140(30): 9730-9736. [24] TKACHEV V V, PONOMAREV V I, ATOVMYAN L O. Crystal structure of the solid electrolyte Na3Sc2(PO4)3 in the temperature range 27-350 ℃[J]. J Struct Chem, 1984, 25(1): 111-116. [25] WANG X C, ZHAO Z Y, WU Q S, et al. Structure, photoluminescence and abnormal thermal quenching behavior of Eu2+-doped Na3Sc2(PO4)3: a novel blue-emitting phosphor for n-UV LEDs[J]. J Mater Chem C Mater, 2016, 4(37): 8795-8801. [26] KIM Y H, ARUNKUMAR P, KIM B Y, et al. A zero-thermal-quenching phosphor[J]. Nat Mater, 2017, 16(5): 543-551. [27] KACZMAREK S M, TSUBOI T J, BOULON G. Valency states of Yb, Eu, Dy and Ti ions in Li2B4O7 glasses[J]. Opt Mater, 2003, 22(4): 303-310. [28] YE R G, CUI Z G, HUA Y J, et al. Eu2+/Dy3+ co-doped white light emission glass ceramics under UV light excitation[J]. J Non Cryst Solids, 2011, 357(11/12/13): 2282-2285. [29] LAHOZ F, MARTIN I R, MENDEZ-RAMOS J, et al. Dopant distribution in a Tm3+-Yb3+ codoped silica based glass ceramic:an infrared-laser induced upconversion study[J]. J Chem Phys, 2004, 120(13): 6180-6190. [30] YANG W J, LUO L Y, CHEN T M, et al. Luminescence and ET of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED[J]. Chem Mater, 2005, 17(15): 3883-3888. [31] DEXTER D L, SCHULMAN J H. Theory of concentration quenching in inorganic phosphors[J]. J Chem Phys, 1954, 22(6): 1063-1070. [32] FONGER W H, STRUCK C W. Eu3+ 5D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOCl[J]. J Chem Phys, 1970, 52(12): 6364-6372. |