[1] Petersen P E. Oral Cancer Prevention and Control-the Approach of the World Health Organization[J]. Oral Oncol,2009,45(4/5):454-460. [2] Blagih J,Coulombe F,Vincent E E,et al. The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses in Vivo[J]. Immunity,2015,42(1):41-54. [3] ZHANG Jidong,LI Jiayuan,JIN Huafeng. Research Progress on Small Molecule Anticancer Drug Release System Based on Fluorescence Effect[J]. Chinese J Appl Chem,2019,36(7):733-748(in Chinese). 张继东,李家源,金华峰. 基于荧光效应的小分子抗癌药物释放体系研究进展[J]. 应用化学,2019,36(7):733-748. [4] WANG Yupeng,ZHOU Dongfang,CHENG Yanxiang,et al. Hemoglobin/Photosensitizer Compound Drug System for Photodynamic Therapy[J]. Chinese J Appl Chem,2018,35(12):1442-1448(in Chinese). 王玉鹏,周东方,程延祥,等. 血红蛋白/光敏剂复合药物体系用于光动力治疗[J]. 应用化学,2018,35(12):1442-1448. [5] Dougan M,Dougan S K. Targeting Immunotherapy to the Tumor Microenvironment[J]. J Cell Biochem,2017,118:3049-3054. [6] Palucka K,Banchereau J. Cancer Immunotherapy via Dendritic Cells[J]. Nat Rev Cancer,2012,12(4):265-277. [7] McNutt M. Cancer Immunotherapy[J]. Science,2013,342(6165):1417. [8] Schumacher T N,Schreiber R D. Neoantigens in Cancer Immunotherapy[J]. Science,2015,348(6230):69-74. [9] Sharma P,Allison J P. The Future of Immune Checkpoint Therapy[J]. Science,2015,348(6230):56-61. [10] Wu X,Giobbie-Hurder A,Liao X,et al. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy[J]. Cancer Immunol Res,2017,5(1):17-28. [11] Yarchoan M,Hopkins A, Jaffee E M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. New Engl J Med,2017,377(25):2500-2501. [12] Santarpia M,Karachaliou N. Tumor Immune Microenvironment Characterization and Response to Anti-PD-1 Therapy[J]. Cancer Biol Med,2015,12(2):74-78. [13] Netea-Maier R T,Smit J W A,Netea M G. Metabolic Changes in Tumor Cells and Tumor-Associated Macrophages:A Mutual Relationship[J]. Cancer Lett,2018,413:102-109. [14] Yu L,Chen X,Wang L,et al. The Sweet Trap in Tumors:Aerobic Glycolysis and Potential Targets for Therapy[J]. Oncotarget,2016,7(25):38908-38926. [15] Warburg O,Wind F,Negelein E. The Metabolism of Tumors in the Body[J]. J Gen Physiol,1927,8:519-530. [16] Gatenby R A,Gillies R J. Why do Cancers Have High Aerobic Glycolysis?[J]. Nat Rev Cancer,2004,4(11):891-899. [17] Porporato P E,Payen V L,Baselet B,et al. Metabolic Changes Associated with Tumor Metastasis, Part 2:Mitochondria, Lipid and Amino Acid Metabolism[J]. Cell Mol Life Sci,2016,73(7):1349-1363. [18] Currie E,Schulze A,Zechner R,et al. Cellular Fatty Acid Metabolism and Cancer[J]. Cell Metab,2013,18(2):153-161. [19] Ho P C,Liu P S. Metabolic Communication in Tumors:A New Layer of Immunoregulation for Immune Evasion[J]. J Immunother Cancer,2016,4(1):4. [20] Lunt S Y,Vander Heiden M G. Aerobic Glycolysis:Meeting the Metabolic Requirements of Cell Proliferation[J]. Annu Rev Cell Dev Bi,2011,27:441-464. [21] Li Z,Zhang H. Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression[J]. Cell Mol Life Sci,2016,73(2):377-392. [22] Ho P C,Bihuniak J D,Macintyre A N,et al. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses[J]. Cell,2015,162(6):1217-1228. [23] Yang B,Ding L,Chen Y,et al. Augmenting Tumor-Starvation Therapy by Cancer Cell Autophagy Inhibition[J]. Adv Sci,2020,7(6):1902847. [24] Xie W,Deng W W,Zan M,et al. Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy[J]. ACS Nano,2019,13(3):2849-2857. [25] Gao F,Cheng Q,Liu M D,et al. Local T Regulatory Cells Depletion by an Integrated Nanodrug System for Efficient Chem-Immunotherapy of Tumor[J]. Sci China Chem,2019,62(9):1230-1244. [26] Jiang B. Aerobic Glycolysis and High Level of Lactate in Cancer Metabolism and Microenvironment[J]. Gene Dis,2017,4(1):25-27. [27] Gao F,Tang Y,Liu W L,et al. Intra/Extracellular Lactic Acid Exhaustion for Synergistic Metabolic Therapy and Immunotherapy of Tumors[J]. Adv Mater,2019,31(51):1904639. [28] Sukumar M,Liu J, Ji Y,et al. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest,2013,123(10):4479-4488. [29] Labow B I,Souba W W. Glutamine[J]. World J Surg,2000,24(12):1503-1513. [30] Shanware N P,Mullen A R,DeBerardinis R J,et al. Glutamine: Pleiotropic Roles in Tumor Growth and Stress Resistance[J]. J Mol Med,2011,89(3):229-236. [31] Klysz D,Tai X G,Robert P A,et al. Glutamine-Dependent Alpha-Ketoglutarate Production Regulates the Balance Between T Helper 1 Cell and Regulatory T Cell Generation[J]. Sci Signal,2015,8(396):ra97. [32] Nabe S,Yamada T,Suzuki J,et al. Reinforce the Antitumor Activity of CD8+ T Cells via Glutamine Restriction[J]. Cancer Sci,2018,109(12):3737-3750. [33] Leone R D,Zhao L,Englert J M,et al. Glutamine Blockade Induces Divergent Metabolic Programs to Overcome Tumor Immune Evasion[J]. Science,2019,366(6468):1013-1021. [34] Sukumar M,Liu J,Ji Y,et al. Inhibiting Glycolytic Metabolism Enhances CD8+ T Cell Memory and Antitumor Function[J]. J Clin Invest,2013,123(10):4479-4488. [35] Greten T F,Manns M P,Korangy F. Myeloid Derived Suppressor Cells in Human Diseases[J]. Int Immunopharmacol,2011,11(7):802-807. [36] Li X Y,Wenes M,Romero P,et al. Navigating Metabolic Pathways to Enhance Antitumor Immunity and Immunotherapy[J]. Nat Rev Clin Oncol,2019,16(7):425-441. [37] Norian L A,Rodriguez P C,O'Mara L A,et al. Tumor-Infiltrating Regulatory Dendritic Cells Inhibit CD8+ T Cell Function via L-Arginine Metabolism[J]. Cancer Res,2009,69(7):3086-3094. [38] Brin E,Wu K,Lu H T,et al. PEGylated Arginine Deiminase can Modulate Tumor Immune Microenvironment by Affecting Immune Checkpoint Expression, Decreasing Regulatory T Cell Accumulation and Inducing Tumor T Cell Infiltration[J]. Oncotarget,2017,8:58948-58963. [39] Geiger R,Rieckmann J C,Wolf T,et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-Tumor Activity[J]. Cell,2016,167:829-842. [40] Ron-Harel N,Santos D,Ghergurovich J M,et al. Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation[J]. Cell Metab,2016,24(1):104-117. [41] Cheng C M,Geng F, Cheng X,et al. Lipid Metabolism Reprogramming and Its Potential Targets in Cancer[J]. Cancer Commun,2018,38(1):27. [42] Monaco M E. Fatty Acid Metabolism in Breast Cancer Subtypes[J]. Oncotarget,2017,8(17):29487-29500. [43] Liu Y. Fatty Acid Oxidation is a Dominant Bioenergetic Pathway in Prostate Cancer[J]. Prostate Cancer P D,2006,9(3):230-234. [44] Clement E,Lazar I,Attan C,et al. Adipocyte Extracellular Vesicles Carry Enzymes and Fatty Acids that Stimulate Mitochondrial Metabolism and Remodeling in Tumor Cells[J]. EMBO J,2020,39(3):e102525. [45] Pearce E L,Walsh M C,Cejas P J,et al. Enhancing CD8 T-Cell Memory by Modulating Fatty Acid Metabolism[J]. Nature,2009,460(7251):103-107. [46] Pacella I,Procaccini C,Focaccetti C,et al. Fatty Acid Metabolism Complements Glycolysis in the Selective Regulatory T Cell Expansion During Tumor Growth[J]. P Natl Acad Sci USA,2018,115(28):E6546-E6555. [47] Zhang Y,Kurupati R,Liu L,et al. Enhancing CD8+ T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy[J]. Cancer Cell,2017,32:377-391. [48] Zhang C,Yue C,Herrmann A,et al. STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells is Critical for Obesity-Promoted Breast Tumor Growth[J]. Cell Metab,2020,31(1):148-161. [49] Xia J L,Tian H Y,Chen J,et al. Polyglutamic Acid Based Polyanionic Shielding System for Polycationic Gene Carriers[J]. Chinese J Polym Sci,2016,34(3):316-323. [50] LIN Lin,GUO Zhaopei,CHEN Jie,et al. Synthesis and Characterization of Polyphenylalanine Grafted Low Molecular Weight PEI as Efficient Gene Carriers[J]. Acta Polym Sin,2017,2(2):321-328(in Chinese). 林琳,郭兆培,陈杰,等. 聚苯丙氨酸修饰低分子量聚乙烯亚胺制备高效基因载体[J]. 高分子学报,2017,2(2):321-328. [51] Xu C N,Tian H Y,Wang Y B,et al. Anti-tumor Effects of Combined Doxorubicin and siRNA for Pulmonary Delivery[J]. Chinese Chem Lett,2017,28(4):807-812. [52] Zhao H,Xu J,Li Y,et al. Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy[J]. ACS Nano,2019,13(11):13127-13135. |