[1] Campoccia D,Montanaro L,Arciola C R. A Review of the Clinical Implications of Anti-infective Biomaterials and Infection-Resistant Surfaces[J]. Biomaterials,2013,34:8018-8029. [2] Campoccia D,Montanaro L,Arciola C R. A Review of the Biomaterials Technologies for Infection-Resistant Surfaces[J]. Biomaterials,2013,34:8533-8554. [3] ZHANG Jianhong,CHEN Jingjie,GAO Lingling,et al. Opportunities and Challenges for Antimicrobial Polymers in the Antibiotic Resistance Crsis[J]. Polym Bull,2019,10:149-162(in Chinese). 张建红,陈婧婕,高玲玲,等. 高分子材料在病菌耐药性危机中的机遇与挑战[J]. 高分子通报,2019,10:149-162. [4] Zasloff M. Antimicrobial Peptides of Multicellular Organisms[J]. Nature,2002,415(6870):389-395. [5] ZHOU Xinyu,ZHOU Chuncai. Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymer[J]. Prog Chem,2018,30(7):913-920(in Chinese). 周欣宇,周春才. 抗菌肽及类抗菌肽的设计、合成及应用[J]. 化学进展,2018,30(7):913-920. [6] Hancock R E,Sahl H. G. Antimicrobial and Host-defense Peptides as New Anti-infective Therapeutic Strategies[J]. Nat Biotechnol,2006,24(12):1551-1557. [7] Alves D,Olivia Pereira M. Mini-review:Antimicrobial Peptides and Enzymes as Promising Candidates to Functionalize Biomaterial Surfaces[J]. Biofouling,2014,30(4):483-499. [8] Sun H,Hong Y,Xi Y,et al. Synthesis, Self-assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates[J]. Biomacromolecules,2018,19(6):1701-1720. [9] Salditt T,Li C,Spaar A. Structure of Antimicrobial Peptides and Lipid Membranes Probed by Interface-Sensitive X-Ray Scattering[J]. Biochim Biophys Acta,2006,1758(9):1483-1498. [10] Kazemzadeh-Narbat M,Kindrachuk J,Duan K,et al. Antimicrobial Peptides on Calcium Phosphate-Coated Titanium for the Prevention of Implant-Associated Infections[J]. Biomaterials,2010,31(36):9519-26. [11] Nordstrom R,Malmsten M. Delivery Systems for Antimicrobial Peptides[J]. Adv Colloid Interface Sci,2017,242:17-34. [12] Cheng H,Yue K,Kazemzadeh-Narbat M,et al. Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis[J]. ACS Appl Mater Interfaces,2017,9(13):11428-11439. [13] ZHAO Mingqi,HUANG Weipin,HU Mi,et al. Functional-Polymer-Based Coatings for Biomedical Materials' Surface[J]. Mater Rep,2019,33(1):27-39(in Chinese). 赵鸣岐,黄威嫔,胡米,等. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报,2019,33(1):27-39. [14] Shukla A,Fleming K E,Chuang H F,et al. Controlling the Release of Peptide Antimicrobial Agents from Surfaces[J]. Biomaterials,2010,31(8):2348-2357. [15] Li B,Jiang B,Boyce B M,et al. Multilayer Polypeptide Nanoscale Coatings Incorporating IL-12 for the Prevention of Biomedical Device-Associated Infections[J]. Biomaterials,2009,30(13):2552-2558. [16] Costa F,Carvalho I F,Montelaro R C,et al. Covalent Immobilization of Antimicrobial Peptides (AMPs) onto Biomaterial Surfaces[J]. Acta Biomater,2011,7(4):1431-1440. [17] Onaizi S A,Leong S S. Tethering Antimicrobial Peptides:Current Status and Potential Challenges[J]. Biotechnol Adv,2011,29(1):67-74. [18] TANG Xin,MAO Xinfang,MA Binyun,et al. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnol,2019,39(8):86-94(in Chinese). 唐馨,毛新芳,马彬云,等. 抗菌肽的研究现状和挑战[J]. 中国生物工程杂志,2019,39(8):86-94. [19] Godoy-Gallardo M,Mas-Moruno C,Yu K,et al. Antibacterial Properties of hLf1-11 Peptide onto Titanium Surfaces:A Comparison Study Between Silanization and Surface Initiated Polymerization[J]. Biomacromolecules,2015,16(2):483-496. [20] Wei T,Yu Q,Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way[J]. Adv Healthcare Mater,2019,8:e1801381. [21] Ding X,Duan S,Ding X,et al. Versatile Antibacterial Materials:An Emerging Arsenal for Combatting Bacterial Pathogens[J]. Adv Funct Mater,2018:1802140. [22] YU Qian,CHEN Hong. Smart Antibacterial Surfaces with Switchable Function to Kill and Release Bacteria[J]. Acta Polym Sin,2020,51(4):319-325(in Chinese). 于谦,陈红. 具有“杀菌-释菌”功能转换的智能抗菌表面[J]. 高分子学报,2020,51(4):319-325. [23] Yan S,Luan S,Shi H,et al. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent[J]. Biomacromolecules,2016,17:1696-1704. [24] Wei T,Tang Z,Yu Q,et al. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities[J]. ACS Appl Mater Interfaces,2017,9:37511-37523. [25] CAO Biyu,SUN Xiuhua,GAO Changlu. Research Progress in Antibacterial Materials with Convertible Functions Between Bacteria-Killing and Foul-Releasing[J]. Mod Chem Ind,2019,39:29-32(in Chinese). 曹弼宇,孙秀花,高昌录. 杀菌-防污功能可转换抗菌材料研究进展[J]. 现代化工,2019,39:29-32. [26] Blum A P,Kammeyer J K,Rush AM,et al. Stimuli-Responsive Nanomaterials for Biomedical Applications[J]. J Am Chem Soc,2015,137:2140-2154. [27] Wei T,Yu Q,Zhan W,et al. A Smart Antibacterial Surface for the On-demand Killing and Releasing of Bacteria[J]. Adv Healthcare Mater,2016,5(4):449-456. [28] Albright V,Zhuk I,Wang Y,et al. Self-defensive Antibiotic-Loaded Layer-by-layer Coatings:Imaging of Localized Bacterial Acidification and pH-Triggering of Antibiotic Release[J]. Acta Biomater,2017,61:66-74. [29] Traba C,Liang J F. Bacteria Responsive Antibacterial Surfaces for Indwelling Device Infections[J]. J Control Release,2015,198:18-25. [30] Pavlukhina S,Lu Y,Patimetha A,et al. Polymer Multilayers with pH-Triggered Release of Antibacterial Agents[J]. Biomacromolecules,2010,11(12):3448-3456. [31] Hu Y,Gong X,Zhang J,et al. Activated Charge-Reversal Polymeric Nano-system:The Promising Strategy in Drug Delivery for Cancer Therapy[J]. Polymers,2016,8:99. [32] Zhang J,Zhu W,Xin B,et al. Development of an Antibacterial Surface with Self-defensive and pH-Responsive Function[J]. Biomater Sci,2019,7:3795-3800. [33] Zhang, Y,Zhang L,Li B,et al. Enhancement in Sustained Release of Antimicrobial Peptide from Dual-Diameter-Structured TiO2 Nanotubes for Long-Lasting Antibacterial Activity and Cytocompatibility[J]. ACS Appl Mater Interfaces,2017,9(11):9449-9461. [34] Chen J,Shi X,Zhu Y,et al. On-Demand Storage and Release of Antimicrobial Peptides Using Pandora's Box-Like Nanotubes Gated with a Bacterial Infection-Responsive Polymer[J]. Theranostics,2020,10(1):109-122. [35] WANG Yingjun,HUANG Xuelian,CHEN Junjian,et al. Bacterial Infection-Microenvironment Responsive Polymeric Materials for the Treatment of Bacterial Infectious Aiseases:A Review[J]. Mater Rep,2019,33(1):5-15(in Chinese). 王迎军,黄雪连,陈军建,等. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报,2019,33(1):5-15. [36] Cado G,Aslam R,Séon L,et al. Self-defensive Biomaterial Coating Against Bacteria and Yeasts: Polysaccharide Multilayer Film with Embedded Antimicrobial Peptide[J]. Adv Funct Mater,2013,23(38):4801-4809. [37] Li X,Wu B,Chen H,et al. Recent Developments in Smart Antibacterial Surfaces to Inhibit Biofilm Formation and Bacterial Infections[J]. J Mater Chem B,2018,6(26):4274-4292. [38] Rai A,Pinto S,Evangelista M B,et al. High-density Antimicrobial Peptide Coating with Broad Activity and Low Cytotoxicity Against Human Cells[J]. Acta Biomater,2016,33:64-77. [39] Yu Q,Zhang Y,Wang H,et al. Anti-fouling Bioactive Surfaces[J]. Acta Biomater,2011,7(4):1550-1557. [40] Wach J Y,Bonazzi S,Gademann K. Antimicrobial Surfaces Through Natural Product Hybrids[J]. Angew Chem Int Ed,2008,47(37):7123-7126. [41] Yu Q,Wu Z,Chen H. Dual-function Antibacterial Surfaces for Biomedical Applications[J]. Acta Biomater,2015,16:1-13. [42] Gao G,Lange D,Hilpert K,et al. The Biocompatibility and Biofilm Resistance of Implant Coatings Based on Hydrophilic Polymer Brushes Conjugated with Antimicrobial Peptides[J]. Biomaterials,2011,32(16):3899-3909. [43] Yu K,Lo J C,Yan M,et al. Anti-adhesive Antimicrobial Peptide Coating Prevents Catheter Associated Infection in a Mouse Urinary Infection Model[J]. Biomaterials,2017,116:69-81. [44] Gao G,Yu K,Kindrachuk J,et al. Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity[J]. Biomacromolecules,2011,12(10):3715-3727. [45] Cleophas R T,Sjollema J,Busscher H J,et al. Characterization and Activity of an Immobilized Antimicrobial Peptide Containing Bactericidal PEG-Hydrogel[J]. Biomacromolecules,2014,15(9):3390-3395. [46] Liu H,Liu X,Meng J,et al. Hydrophobic Interaction-Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces[J]. Adv Mater,2013,25(6):922-927. [47] Yamato M,Akiyama Y,Kobayashi J,et al. Temperature-Responsive Cell Culture Surfaces for Regenerative Medicine with Cell Sheet Engineering[J]. Prog Polym Sci,2007,32(8/9):1123-1133. [48] Dworak A,Utrata-Wesolek A,Szweda D,et al. Poly[tri(ethylene glycol) Ethyl Ether Methacrylate]-Coated Surfaces for Controlled Fibroblasts Culturing[J]. ACS Appl Mater Interfaces,2013,5(6):2197-2207. [49] Moroni L,Klein G M,Benetti E M. Polymer Brush Coatings Regulating Cell Behavior: Passive Interfaces Turn into Active[J]. Acta Biomater,2014,10(6):2367-2378. [50] Lutz J F. Thermo-switchable Materials Prepared Using the OEGMA-Platform[J]. Adv Mater,2011,23(19):2237-2243. [51] Yu Q,Ista L K,Lopez G P. Nanopatterned Antimicrobial Enzymatic Surfaces Combining Biocidal and Fouling Release Properties[J]. Nanoscale,2014,6(9):4750-4757. [52] Wang X,Yan S,Song L,et al. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency[J]. ACS Appl Mater Interfaces,2017,9:40930-40939. [53] Laloyaux X,Fautre E,Blin T,et al. Temperature-Responsive Polymer Brushes Switching from Bactericidal to Cell-Repellent[J]. Adv Mater,2010,22(44):5024-5028. [54] Zhan J,Wang L,Zhu Y,et al. Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo[J]. ACS Appl Mater Interfaces,2018,10(42):35830-35837. [55] Yan S,Shi H,Song L,et al. Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture[J]. ACS Appl Mater Interfaces,2016,8(37):24471-24481. [56] Zhang J,Zhou R,Wang H,et al. Bacterial Activation of Surface-Tethered Antimicrobial Peptides for the Facile Construction of a Surface with Self-defense[J]. Appl Surf Sci,2019,497:143480. [57] QIAN Yuxin,ZHANG Danfeng,WU Yueming,et al. The Design, Synthesis and Biological Activity Atudy of Nylon-3 Polymers as Mimics of Host Defense Peptides[J]. Acta Polym Sin,2016,10:1300-1311(in Chinese). 钱宇芯,张丹丰,武月铭,等. 模拟宿主防御肽的尼龙3抗菌聚合物结构设计、合成及活性研究[J]. 高分子学报,2016,10:1300-1311. [58] PAN Shuai,TANG Jianbin. Polymeric Antimicrobial Agents Mimicking the Natural Antimicrobial Peptides[J]. Polym Bull,2011,12:43-49(in Chinese). 潘帅,唐建斌. 模拟天然抗菌多肽高分子抗菌药物的研究进展[J]. 高分子通报,2011,12:43-49. |