[1] | May S J,Zheng J Y,Wessels B W, et al. Dendritic Nanowire Growth Mediated by a Self-assembled Catalyst[J]. Adv Mater,2005,17(5):598-602. | [2] | Wang D,Qian F,Yang C, et al. Rational Growth of Branched and Hyperbranched Nanowire Structure[J]. Nano Lett,2004,4(5):871-874. | [3] | Suyatin D B,Hallstram W,Samuelson L, et al. Gallium Phosphide Nanowire Arrays and Their Possible Application in Cellular Force Investigations[J]. J Vacuum SciTechnol B,2009,27(6):3092-3094. | [4] | Wan Q,Dattolie N,Fung W Y, et al. High-performance Transparent Conducting Oxide Nanowires[J]. Nano Lett,2006,6(12):2909-2915. | [5] | Gao H J,Chen Y J,Li H L, et al. Hierarchical Cu7S4-Cu9S8 Heterostructure Hollow Cubes for Photothermal Aerobic Oxidation of Amines[J]. Chem Eng J,2019,363:247-258. | [6] | Wang J G,Xiao Q,Zhou H J, et al. Budded, Mesoporous Silica Hollow Spheres:Hierarchical Structure Controlled by Kinetic Self-assembly[J]. Adv Mater,2006,18(24):3284. | [7] | Arora H,Du P,Tan K W, et al. Block Copolymer Self-assembly-directed Single-crystal Homo and Heteroepitaxial Nanostructures[J]. Science,2010,330(6001):214-219. | [8] | Yu J G,Su Y R,Cheng B.Template-free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania[J]. Adv Funct Mater,2007,17(12):1984-1990. | [9] | Wang F,Zhao D X,Guo Z, et al. Artificial Leaf Structures as a UV Detector Formed by the Self-assembly of ZnO Nanoparticles[J]. Nanoscale,2013,5(7):2864-2869. | [10] | Liao J H,Bernard L,Langer M, et al. Reversible Formation of Molecular Junctions in 2D Nanoparticle Arrays[J]. Adv Mater,2006,18(18):2444. | [11] | Cheng C W,Liu B,Yang H Y, et al. Hierarchical Assembly of ZnO Nanostructures on SnO2 Backbone Nanowires:Low-Temperature Hydrothermal Preparation and Optical Properties[J]. ACS Nano,2009,3(10):3069-3076. | [12] | Liu L J,Guan J G,Shi W D, et al. Secondary Nucleation and Growth of ZnO[J]. J Am Chem Soc,2007,129(51):15786-15793. | [13] | Peng B,Tan L F,Chen D, et al. Programming Surface Morphology of TiO2 Hollow Spheres and Their Superhydrophilic Films[J]. ACS Appl Mater Interfaces,2012,4(1):96-101. | [14] | Li Y,Wang L L,Liang J, et al. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Nanoscale Res Lett,2017,12:531. | [15] | Wang H K,Kalytchuk S,Yang H H, et al. Hierarchical Growth of SnO2 Nanostructured Films on FTO Substrates:Structural Defects Induced by Sn(II) Self-doping and Their Effects on Optical and Photoelectrochemical Properties[J]. Nanoscale,2014,6(11):6084-6091. | [16] | Liu X X,Xiong Y J,Li Z Q, et al. Large-scale Fabrication of TiO2 Hierarchical Hollow Spheres[J]. Inorg Chem,2006,45(9):3493-3495. | [17] | Yan W W,Fang M,Tan X L, et al. Template-free Fabrication of SnO2 Hollow Spheres with Photoluminescence from Sni[J]. Mater Lett,2010,64(19):2033-2035. | [18] | DU Guofeng,ZHAO Kang,QIN Guohui, et al. Research Progress on SnO2 Hierarchical Nanostructures[J]. Electron Compon Mater,2014,33(11):29-35(in Chinese). 杜国芳,赵康,秦国辉,等. SnO2分级纳米结构的研究进展[J]. 电子元件与材料,2014,33:29-35. | [19] | Yin J Z,Wang X F,Li R Q, et al. Synthesis and Characterization of Hierarchical SnO2 Hollow Octahedra[J]. Mater Lett,2013,113:118-121. | [20] | Li X B,Wang X W,Shen Q, et al. Controllable Low-Temperature Chemical Vapor Deposition Growth and Morphology Dependent Field Emission Property of SnO2 Nanocone Arrays with Different Morphologies[J]. ACS Appl Mater Interfaces,2013,5(8):3033-3041. | [21] | Chen B,Lu K.Hierarchically Branched Titania Nanotubes with Tailored Diameters and Branch Numbers[J]. Langmuir,2012,28(5):2937-2943. | [22] | Jiang Q P,Li Y H,Du G F, et al. A Novel Structure of SnO2 Nanorod Arrays Synthesized via a Hydrothermal Method[J]. Mater Lett,2013,105:95-97. | [23] | Kuang Q,Jiang Z Y,Xie Z X, et al. Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure:A Case of ZnO/SnO2[J]. J Am Chem Soc,2005,127(33):11777-11784. | [24] | Zhou W,Cheng C,Liu J P, et al. Lithium-Ion Batteries:Epitaxial Growth of Branched α-Fe2O3/SnO2 Nano-heterostructures with Improved Lithium-Ion Battery Performance[J]. Adv Funct Mater,2011,21(13):2439-2445. | [25] | Liu J P,Jiang J,Chen C W, et al. Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/shell Arrays:A New Class of High-performance Pseudocapacitive Materials[J]. Adv Mater,2011,23(18):2076-2081. | [26] | Xia X H,Tu J P,Zhang Y Q, et al. High-quality Metal Oxide Core/shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage[J]. ACS Nano,2012,6(6):5531-5538. | [27] | Dey S,Podder S,Roychowdhury A, et al. Facile Synthesis of Hierarchical Nickel(III) Oxide Nanostructure:A Synergistic Remediating Action Towards Water Contaminants[J]. J Environ Manage,2018,211:356-366. | [28] | MOU Fangzhi.New Preparation Technology and Properties of Complex Micro-nanostructures of Metal Oxides[D]. Wuhan:Wuhan University of Technology,2012(in Chinese). 牟方志. 金属氧化物复杂微纳结构的新制备技术与性能[D]. 武汉:武汉理工大学,2012. | [29] | Mai L Q,Fan Y,Zhao Y L, et al. Hierarchical MnMoO4/CoMoO4Heterostructured Nanowires with Enhanced Supercapacitor Performance[J]. Nat Commun,2011,2:381. | [30] | Wang X X,Xu M,Fu Y L, et al. A Highly Conductive and Hierarchical PANI Micro/Nanostructure and Its Supercapacitor Application[J]. Electrochim Acta,2016,222:701-708. | [31] | Bao L,Zang J,Li X.Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-performance Supercapacitor Electrodes[J]. Nano Lett,2011,11(3):1215-1220. | [32] | Hou Y,Cheng Y,Hobson T, et al. Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes[J]. Nano Lett,2010,10(7):2727-2733. | [33] | Fan P,Fan Z,Huang F L, et al. GO@PolyanilineNanorod Array Hierarchical Structure:A Photothermal Agent with High Photothermal Conversion Efficiency for Fast Near-infrared Responsive Hydrogels[J]. Ind Eng Chem Res,2019,58(9):3893-3901. | [34] | Sudhagar P,Song T,Dong H L, et al. High Open Circuit Voltage Quantum Dot Sensitized Solar Cells Manufactured with ZnO Nanowire Arrays and Si/ZnO Branched Hierarchical Structures[J]. J Phys Chem Lett,2011,2(16):1984-1990. | [35] | Salant A,Shalom M,Tachan Z, et al. Quantum Rod-Sensitized Solar Cell:Nanocrystal Shape Effect on the Photovoltaic Properties[J]. Nano Lett,2012,12(4):2095. | [36] | Li P,Lim X,Zhu Y, et al. Tailoring Wettability Change on Aligned and Patterned Carbon Nanotube Films for Selective Assembly[J]. J Phys Chem B,2007,111(7):1672-1678. | [37] | Luo C,Zuo X,Wang L, et al. Flexible Carbon Nanotube Polymer Composite Films with High Conductivity and Superhydrophobicity Made by Solution Process[J]. Nano Lett,2008,8(12):4454-4458. | [38] | Dhindsa M S,Smith N R,Heikenfeld J, et al. Reversible Electrowetting of Vertically Aligned Superhydrophobic Carbon Nanofibers[J]. Langmuir,2006,22(21):9030-9034. | [39] | Gao N,Yan Y,Gao N, et al. Modeling Superhydrophobic Contact Angles and Wetting Transition[J]. J Bionic Eng,2009,6(4):335-340. | [40] | Zhi C,Feng L,Hao L, et al. One-step Electrodeposition Process to Fabricate CathodicSuperhydrophobic Surface[J]. Appl Surf Sci,2011,258(4):1395-1398. | [41] | GONG Maogang, XU Xixoliang, YANG Zhou, et al. Preparation of Superhydrophobic ZnO Nanorod Film by Hydrothermal Method[J]. Funct Mater,2008,11:1906-1908(in Chinese). 公茂刚,许小亮,杨周,等. 用水热法制备超疏水性ZnO纳米棒薄膜[J]. 功能材料,2008,11:1906-1908. | [42] | Wang D,Guo Z,Chen Y, et al. In Situ Hydrothermal Synthesis of Nanolamellate CaTiO3 with Controllable Structures and Wettability[J]. Inorg Chem,2007,46(19):7707-7709. | [43] | Feng X J,Zhai J,Jiang L.The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films[J]. Angew Chem Int Edit,2005,44(32):5115-5518. | [44] | Shi F,Chen X X,Wang L Y, et al. Roselike Microstructures Formed by Direct In Situ Hydrothermal Synthesis:From Superhydrophilicity to Superhydrophobicity[J]. Chem Mat,2005,17(24):6177-6180. | [45] | Fan P,Chen J Y,Yang J T, et al. GO@Cu Silicate Nano-needle Arrays Hierarchical Structure:A New Route to Prepare High Optical Transparent, Excellent Self-cleaning and Anticorrosion Superhydrophobic Surface[J]. J Nanopart Res,2017,19(2):36. |
|