乐传俊*,王丽,苏扬,朱少萍
收稿日期:
2013-04-26
修回日期:
2013-07-14
出版日期:
2014-04-10
发布日期:
2014-04-10
通讯作者:
乐传俊,副教授; Tel:0519-85135672; E-mail:ywangjung@163.com; 研究方向:精细有机催化合成和生物资源催化转化
基金资助:
YUE Chuanjun*, WANG Li, SU Yang, ZHU Shaoping
Received:
2013-04-26
Revised:
2013-07-14
Published:
2014-04-10
Online:
2014-04-10
Contact:
YUE Chuan-Jun
Supported by:
Supported by Nature Science Foundation of Jiangsu Province(No.BK2011235), Guiding Project of Education Department of Jiangsu Province(No.08kjd30001), and Nature Science Foundation of Changzhou Institute of Technology(No.YN0907)
摘要: 随着全球生物柴油产量的迅速增加,如何利用生物柴油副产的大量甘油已成为一个重要的研究课题。 生物源甘油是一个多功能的绿色“平台分子”,通过对其还原、氧化、重整(分解)、脱水、醚化及与其它试剂的反应可生成许多以石化为原料的产品。 本文概述了近年来由甘油转化为各种化工产品的研究进展。
中图分类号:
乐传俊, 王丽, 苏扬, 朱少萍. 甘油的化学转化研究概况[J]. 应用化学, DOI: 10.3724/SP.J.1095.2014.30203.
YUE Chuanjun*, WANG Li, SU Yang, ZHU Shaoping. Survey of the Chemical Transformation Progress of Glycerol[J]. Chinese Journal of Applied Chemistry, DOI: 10.3724/SP.J.1095.2014.30203.
[1] Karaosmanoglu F,Cgzoglu K B,Tüter M,et al. Investigation of the Refining Step of Biodiesel Productio[J]. Energy Fuels,1996,10(4):890-895.[2] Ganapati D Y,Payal A C,Devendra P T. Hydrogenolysis of Glycerol to 1,2-Propanediol over Nano-fibrous Ag-OMS-2 Catalysts[J]. Ind Eng Chem Res,2012,51:1549-1562.[3] Ott L,Bicker,Payal A C,et al. Catalytic Dehydration of Glycerol in Sub- and Supercritical Water: A New Chemical Process for Acrolein Production[J]. Green Chem,2006,8(2):214-220.[4] Zhou C H,Beltramini J N,Fana Y X,et al. Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals[J]. Chem Soc Rev,2008,37(3):527-549.[5] Pagliaro M,Ciriminna R,Kimura H,et al. From Glycerol to Valued-added Products[J]. Angew Chem Int Ed,2007,46:4434-4440.[6] Ruppert A M,Weinberg K,Palkovits R. Hydrogenolysis Goes Bio:From Carbohydrates and Sugar Alcohols to Platform Chemicals[J]. Angew Chem Int Ed,2012,51:2564-2601.[7] FENG Jian,YUAN Maolin,CHEN Hua,et al. Studies and Applications of Catalytic Hydrogenolysis of Glycerol [J]. Prog Chem,2007,19(5):651-658(in Chinese).冯建,袁茂林,陈华,等. 甘油催化氢解的研究与应用[J]. 化学进展,2007,19(5):651-658.[8] HUANG Zhiwei,CUI Fang,ZUO Jianliang,et al. Research Progress on Catalysts in Glycerol Hydrogenolysis to 1,2-Propanediol[J]. Chinese J Mol Catal,2011,25(6):281-288(in Chinese).黄志威,崔芳,左建良,等. 甘油催化氢解制备1,2-丙二醇催化剂研究进展[J]. 分子催化,2011,25(6):281-288.[9] Wu Z J,Mao Y Z,Song M,et al. Cu/Boehmite:A Highly Active Catalyst for Hydrogenolysis of Glycerol to 1,2-Propanediol[J]. Catal Commun,2013,32:52-57.[10] Kwak B K,Park D S,Yun Y S,et al. Preparation and Characterization of Nanocrystalline CuAl2O4 Spinel Catalysts by Sol-gel Method for the Hydrogenolysis of Glycerol[J]. Catal Commun,2012,24:90-95.[11] Mart n D D,Ojeda M,Granados M L,et al. Stability and Regeneration of Cu-ZrO2 Catalysts Used in Glycerol Hydrogenolysis to 1,2-Prooanediol[J]. Catal Today,2013,210:98-105.[12] Xia S X,Nie R F,Lu X Y,et al. Hydrogenolysis of Glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 Catalyst: the Role of Basicity and Hydrogen Spillover[J]. J Catal,2012,196:1-11. [13] Hamzah N,Nordin N M,Nadzri A H A,et al. Enhanced Activity of Ru/TiO2 Catalyst Using Bisupport Bentonite-TiO2 for Hydrogenolysis of Glycerol in Aqueous Media[J]. Appl Catal A:Gen,2012,419/420:133-141.[14] J-Morales I,Vila F,Mariscal R,et al. Hydrogenolysis of Glycerol to Obtain 1,2-Peopanediol on Ce-promoted Ni/SBA-15 Catalysts[J]. Appl Catal B:Environ,2012,117/118:253-259. [15] Gandarias I,Requies J,Arias P L,et al. Liquid-phase Glycerol Hydrogenolysis by Formic Acid over Ni-Al2O3 Catalysts[J]. J Catal,2012,290:79-89. [16] Zhu S H,Gao X Q,Zhu Y L,et al. Promoting Effect of Boron Oxide on Cu/SiO2 Catalyst for Glycerol Hydrogenoysis to 1,2-Propanediol[J]. J Catal,2013,303:70-79.[17] Xi Y,Holladay J E,Frye J G,et al. A Kinetic and Mass Transfer Model for Glycerol Hydrogenolysis in a Trickle-Bed Reactor[J]. Org Process Res Dev,2010,14(6):1304-1312.[18] Torres A,Roy D,Subramaniam B,et al. Kinetic Modeling of Aqueous-Phase Glycerol Hydrogenolysis in a Batch Slurry Reactor[J]. Ind Eng Chem Res,2010,49:10826 -10835. [19] Vasiiadou E S,Eggenhuisen T M,Munnik P,et al. Synthesis and Performance of Highly Dispersed Cu/SiO2 Catalysts for the Hydrogenolysis of Glycerol[J]. Appl Catal B:Environ,2013,http://dx.doi.org/10.1016 /j.apcatb.2014,145:108-119.[20] Martin A,Armbruster U,Gandarias I,et al. Glycerol Hydrogenolysis into Propanediol Using in situ Generated Hydrogen A Critical Review[J]. Eur J Lipid Sci Technol,2013,115:9-27.[21] Dam J,Hanefeld U. Renewable Chemicals:Dehydroxylation of Glycerol and Polyols[J]. Chem Sus Chem,2011,4:1017-1034.[22] Dam J,Djanashivili K,Kapteijn F,et al. Pt/Al2O3 Catalyzed 1,3-Propanediol Formation from Glycerol Using Tungsten Additives[J]. Chem Cat Chem,2013,5:497-505.[23] LIU Longjie,ZHANG Yanhua,WANG Aiqin,et al. Mesoporous WO3 Supported Pt Catalyst for Hydrogenolysis of Glycerol to 1,3-Propanediol[J]. Chinese J Catal,2012,33(8):1257-1261(in Chinese).刘龙杰,张艳华,王爱琴,等. 介孔氧化钨担载Pt催化剂上甘油氢解制备1,3-丙二醇[J]. 催化学报,2012,33(8):1257-1261.[24] Zhu S H,Gao X Q,Zhu Y L,et al. Alkaline Metals Modified Pt-H4SiW12O40/ZrO2 Catalyst for the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol[J]. Appl Catal B:Environ,2013,140/141:60-67.[25] Nakagawa Y,Ning X H,Amada Y,et al. Solid Acid Co-catalyst for the Hydrogenolysis of Glycerol to 1,3-Propanedio over Ir-ReOx/SiO2[J]. Appl Catal A:Gen,2012,433/434:128-134.[26] LAN Zhaohong. Progress in Chemical Conversion of Glycerol to 1,3-Propanediol[J]. Chem Ind Eng Prog,2012,31(suppl):25-29(in Chinese).兰昭洪. 甘油化学法制备1,3-丙二醇的研究进展[J]. 化工进展,2012,31(增刊):25-29.[27] Konaka A,Tago T,Yoshikawa T,et al. Conversion of Glycerol into Allyl Alcohol over Potassium-supported Zirconia-iron Oxide Catalyst[J]. Appl Catal B:Environ,2013,http://dx.doi.org/10.1016/ j.apcatb.2014,146:267-273. [28] WANG Huanwei,LIU Tao,HE Zhanfeng,et al. Glycerol Dehydration and Consecutive Hydrogen Transfer to Allyl Alcohol over MoO3/SiO2 Catalyst[J]. Chem J Chinese Univ,2013,34(3):650-655(in Chinese).王奂袆,刘涛,贺站锋,等. MoO3/SiO2催化甘油脱水氢转移还原制备烯丙醇[J]. 高等学校化学学报,2013,34(3):650-655.[29] Zakaria Z Y,Amin N A S,Linnekoski J. A Perspective on Catalytic Conversion of Glycerol to Olefins[J]. Biomass and Bioenergy,2013,55:370-385.[30] LI Mingyan,ZHOU Chunhui,Beltramini J N,et al. Catalytically Selective Oxidation of Glycerol[J]. Prog Chem,2008,20(10):1474-1486(in Chinese).李明燕,周春晖,Beltramini J N,等. 甘油的催化选择氧化[J]. 化学进展,2008,20(10):1474-1486.[31] YU Jianer,WANG Jianli,JI Jianbing. Progress in Synthesis of Dihydroxyacetone from Glycerol[J]. Mod Chem Ind,2009,29(suppl 2):45-48(in Chinese).余健儿,王建黎,计建炳. 由甘油制备1,3-二羟基丙酮的研究进展[J]. 现代化工,2009,29(增2):45-48.[32] AI Zhen,ZHU Lin. Research Advances in Dihydroxyacetone Production[J]. Chem Ind Times,2012,26(8):44-47(in Chinese).艾珍,朱林. 二羟基丙酮的合成研究进展[J]. 化工时刊,2012,26(8):44-47.[33] Hirasawa S,Watanabe H,Kizuka T,et al. Performance, Structure and Mechanism of Pd-Ag Alloy Catalyst for Selective Oxidation of Glycerol to Dihydroxyacetone[J]. J Catal,2013,300:205-216.[34] Zheng Z,Luo M,Yu J,et al. Novel Process for 1,3-dihydroxyacetone Production from Glycerol.1.Technological Feasibility Study and Process Design[J]. Ind Eng Chem Res,2012,51:3715-3721. [35] ZHOU Jie,ZHAO Ning,XIAO Fukui,et al. Selective Oxidation of Glycerol to Dihydroxyacetone over H3PW12O40/SiO2 Catalyst[J]. Petrochem Technol,2012,41(8):921-927(in Chinese).周洁,赵宁,肖福魁,等. H3PW12O4/SiO2催化氧化甘油制备二羟基丙酮[J]. 石油化工,2012,41(8):921-927.[36] Nunes C,Guerreiro M. Chemometric Approaches on Glycerol Oxidation with H2O2 over Supported Gold Nanoparticles[J]. J Mol Catal A:Chem,2013,370:145-151.[37] Roy D,Subramaniam B,Chaudhari R. Cu-based Catalysts Show Low Temperature Activity for Glycerol Conversion to Lactic Acid[J]. ACS Catal,2011,(1):548-551.[38] Tongsakul D,Nishimura S,Thammacharoen C,et al. Hydrotalcite-supported Platinum Nanopartices Prepared by a Green Synthesis Method for Selective Oxidation of Glycerol in Water Using Molecular Oxygen[J]. Ind Eng Chem Res,2012,51:16182-16187. [39] Nimlos M R,Blanksby S J,Qian X H,et al. Mechanisms of Glycerol Dehydration[J]. J Phy Chem A,2006,110:6145-6156.[40] Martin A,Armbruster U,Atia H. Recent Developments in Dehydration of Glycerol Toward Acrolein over Heteropolyacids[J]. Eur J Lipid Sci Technol,2012,114(1):10-23.[41] Katryniok B,Paul S,Capron M,et al. Towards the Sustainable Production of Acrolein by Glycerol Dehydration[J]. Chem Sus Chem,2009,2(8):719-730. [42] WU Liangpeng,ZHOU Zhouyu,LI Xinjun. Research Progress in Glycerol Dehydration to Acrolein[J]. Mod Chem Ind,2012,32(2):28-32(in Chinese).吴梁鹏,周舟宇,李新军. 甘油制备丙烯醛的最新研究进展[J]. 现代化工,2012,32(2):28-32.[43] Massa M,Andersson A,Finocchio E,et al. Performance of ZrO2-Supported Nb- and W-oxide in the Gas-phase Dehydration of Glycerol to Acrolein[J]. J Catal,2013,297:93-109.[44] Gu Y L,Liu S Z,Li C Y,et al. Selective Conversion of Glycerol to Arolein over Supported Nickel Sulfate Catalysts[J]. J Catal,2013,301:93-102.[45] Sato S,Akiyama M,Takahashi R,et al. Vapor-phase Reaction of Polyols over Copper Catalysts[J]. Appl Catal A:Gen,2008,347:186-191.[46] LI Xiaofei,YU Dinghue,CHU Xuming. Dehydration of Glycerol to Acetol over CuO/SiO2 Catalysts [J]. Petrochem Technol,2010,39(8):866-871(in Chinese).李晓菲,余定华,初旭明. CuO/SiO2催化剂上甘油脱水制α-羟基丙酮[J]. 石油化工,2010,39(8):866-871.[47] NIU Shasha,ZHU Yulei,ZHENG Hongyan,et al. Dehydration of Glycerol to Acetol over Copper-Based Catalysts[J]. Chinese J Catal,2011,32(2):345-351(in Chinese).牛莎莎,朱玉雷,郑洪岩,等. 铜基催化剂上甘油脱水制备羟基丙酮[J]. 催化学报,2011,32(2):345-351.[48] Barros F de A A,Sousa H S A de,Oliveira A C,et al. Characterisation of High Surface Area Nancomposites for Glycerol Transformation:Effect of the Presence of Silica on the Structure and Catalytic Activity[J]. Catal Today,2012,212:127-136.[49] Akizuki M,Oshima Y. Kinetics of Glycerol Dehydration with WO3/TiO2 in Supercritical Water[J]. Ind Eng Chem Res,2012,51:12253-12257.[50] Liebig C,Paul S,Katryniok B,et al. Glycerol Conversion to Acrylonitrile by Consecutive Dehydration over WO3/TiO2 and Ammoxidation over Sb-(F,V)-O[J]. Appl Catal B:Environ,2013,132/133:170-182. [51] Sivaiah M V,Robles-Manuel S,Valange S,et alt. Recent Development in Acid and Base-catalyzed Etherification of Glycerol to Polyglycerols[J]. Catal Today,2012,198:305-313.[52] Jerome F,Pouilloux Y,Barrault J. Rational Design of Solid Catalysts for the Selective Use of Glycerol as a Natural Organic Building Block[J]. Chem Sus Chem,2008,1:586-613.[53] Gholami Z,Abdullah A Z,Lee K-T. Glycerol Etherification to Polyglycerols Using Ca1+xAl1-xLaxO3 Composite Catalysts in a Solventless Medium[J]. J Taiwan Inst Chem Eng,2013,44:117-122. [54] Lin Y-C. Catalytic Valorization of Glycerol to Hydrogen and Syngas[J]. Int J Hydrogen Energy,2013,38:2678-2700. [55] Markocic E,Kramberger B,Van Bennekom J G,et al. Glycerol Reforming in Supercritical Water:A Short Review[J]. Renew Sustain Energy Rev,2013,23:40-48.[56] Manara P,Zabaniotou A. Co-pyrolysis of Biodiesel-derived Glycerol with Greek Lignite:A Laboratory Study[J]. J Anal Appl Pyrol,2013,100:166-172.[57] Liu S-K,Lin Y-C. Autothermao Partial Oxidation of Glycerol to Syngas over Pt-, LaMnO3-, and Pt/LaMnO3-coated Monoliths[J]. Ind Eng Chem Res,2012,51:16278-16287.[58] Mart nez L M,Araque M,Vargas J C,et al. Effect of Ce/Zr Ratio in CeZr-CoRh Catalysts on the hydrogen Production by Glycerol Steam Reforming[J]. Appl Catal B:Environ,2013,132/133:499-510.[59] Pairojpiriyakul T,Croiset E,Kiatkittipong W,et al. Hydrogen Production from Catalytic Supercritical Water Reforming of Glycerol with Cobalt-based Catalysis[J]. Int J Hydrogen Energy,2013,38:4368-4379.[60] Wang C,Dou B L,Chen H S,et al. Renewable Hydrogen Production from Steam Reforming of by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg Catalysts[J]. Int J Hydrogen Energy,2013,38:3562-3571.[61] Tuza P V,Manfro R L,Ribeiro N F P,et al. Production of Renewable Hydrogen by Aqueous-phase Reforming of Glycerol over Ni-Cu Catalysts Derived from Hydrotalcite Precursors[J]. Renew Energy,2013,50:408-414.[62] Kamonsuangkaem K,Therdthianwong S,Therdthianwong A. Hydrogen Production from Yellow Glycerol via Catalytic Oxidative Steam Reforming[J]. Fuel Process Technol,2013,106:695-703.[63] LIU Fang. Study on Synthesis of Epichlorohydrin by Catalytic Chlorinated Glycerol[D]. Jiangxi Normal University,2009,5(in Chinese).刘方. 甘油催化氯代法合成环氧氯丙烷新工艺研究[D]. 江西师范大学,2009,5.[64] Rahmat N,Abdullah A Z,Mohamed A R. Recent Progress on Innovation and Potential Technologies for Glycerol Transformation into Fuel Additives:A Critical Review[J]. Renew Sustain Energy Rev,2010,14:987-1000.[65] Gonz lez M D,Cesteros Y,Salagre P. Establising the Role of Bronsted Acidity and Porosity for the Catalytic Etherification of Glycerol with Tert-butanol by Modifying Zeolites[J]. J Mol Catal A:Chem,2013,450:178-188.[66] Gonz lez M D,Salagre P,Taboada E,et al. Sulfonic Acid-functionalized Aerogels as High Resistant to Deactivation Catalysts for Etherification of Glycerol with Isobutene[J]. Appl Catal B:Environ,2013,136/137:287-293.[67] Zhao W Q,Yi C H,Yang B L,et al. Etherification of Glycerol and Isobutylene Catalyzed over Rare Earth Modified Hβ-zeolite[J]. Fuel Process Technol,2013,112:70-75.[68] Yuan Z L,Xia S X,Chen P,et al. Etherification of Biodiesel-based Glycerol with Bioethanol over Tungstophosphoric Acid to Synthesize Glyceryl Ethers[J]. Energy Fuels,2011,25:3186-3191.[69] Chang J-S,Lee Y-D,Chou L C-S,et al. Methylation of Glycerol with Dimethyl Sulfate to Produce a New Oxygenate Additive for Diesels[J]. Ind Eng Chem Res,2012,51:655-661. [70] Pico M P,Romero A,Rodriguez S,et al. Etherification of Glycerol by Tert-butyl Alcohol:Kinetic Model[J]. Ind Eng Chem Res,2012,51:9500-9509.[71] Liu J J,Yang B L,Yi C H. Kinetic Study of Glycerol Etherification with Isobutene[J]. Ind Eng Chem Res,2012,52:3742-3751.[72] Zhou L,Al-Zaini E,Adesina A A. Catalytic Characteristics and Parameters Optimization of the Glycerol Acetylation over Solid Acid Catalysts[J]. Fuel,2013,103:617-625.[73] Testa M L,Parola V L,Liotta L F,et al. Screening of Different Solid Acid Catalysts for Glycerol Acetylation[J]. J Mol Catal A:Chem,2013,367:69-76. [74] Zhu S H,Zhu Y L,Gao X Q,et al. Production of Bioadditives from Glycerol Esterification over Zirconia Supported Heteropolyacids[J]. Bioresource Technology,2013,130:45-51.[75]Simanjuntak F S H,Widyaya V T,Kim C S,et al. Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Using Magnesium-lanthanum Mixed Oxide Catalyst[J]. Chem Eng Sci,2013,94:265-270.[76] lvarez M G,Frey A M,Bitter J H,et al. On the Role of the Activation Procedure of Supported Hydrotalcites for Base Catalyzed Reactions:Glycerol to Glycerol Carbonate and Self-condensation of Acetone[J]. Appl Catal B:Environ,2013,134/135:231-237.[77] Bai R X,Wang Y,Wang S,et al. Synthesis of Glycerol Carbonate from Glycerol and Dimethyl Carbonate Catalyzed by NaOH/γ-Al2O3[J]. Fuel Process Technol,2013,106:209-214.[78] GUO Shuang,LI Jinli,WANG Jiaxi. Investigation on a Green Synthetic Approach for Glycerol Carbonate:The Reaction of Glycerol with Urea[J]. Chem Ind Eng Prog,2012,31(3):658-661(in Chinese).郭爽,李金丽,王家喜. 尿素和甘油反应制甘油碳酸酯的绿色合成工艺[J]. 化工进展,2012,31(3):658-661.[79] Oprescu E-E,Stepan E,Dragomir R E,et al. Synthesis and Tesing of Glycerol Ketals as Components for Diesel Fuel [J]. Fuel Process Technol,2013,110:214-217.[80] Wegenhart B L,Liu S,Thom M,et al. Solvent-Free Methods for Making Acetals Derived from Glycerol and Furfural and Their Use as a Biodiesel Fuel Component[J]. ACS Catal,2012,2:2524-2530.[81] Li X,Xu C H,Liu C Q,et al. Reaction Pathway in Vapor-phase Synthesis of Pyrazinyl Compounds from Glycerol and 1,2-Propanediamine over ZnO-based Catalysts[J]. J Mol Catal A:Chem,2013,371:104-110. [82] Liu C Q,Xu C H,Xia T W,et al. Glycerol Catalytic Cyclocondensation with Ethanediamine to Pyrazinyl Compounds over the Modified SiO2-Al2O3[J]. Heteroatom Chem,2012,23(4):377-382. [83] Fan Z Y,Corbet M,Zhao Y,et al. Cyclic Glyceryl Sulfate:a Simple and Versatile Bio-based Synthon for the Facile and Convergent Synthesis of Novel Surface-active Agents[J]. Tetrahedron Lett,2013,54:3595-3598.[84] Guo P M,Zheng C,Huang M M,et al. Ultrasonic Pretreatment for Lipase-catalyzed Synthesis of 4-Methoxy Cinnamoyl Glycerol[J]. J Mol Catal B:Enz,2013,93:73-78.[85] Pullanikat P,Lee J H,Yoo K S,et al. Direct Conversion of Glycerol into Formic Acid via Water Stable Pd(Ⅱ) Catalyzed Oxidative Carbon-carbon Bond Cleavage[J]. Tetrahedron Lett,2013,54:4463-4466.[86] Cui X J,Deng Y Q,Shi F. Reductive N-Alkylation of Nitro Compounds to N-Alkyl and N,N-Dialyl Amines with Glycerol as Hydrogen Source[J]. ACS Catal,2013,3:808-811.[87] Khatri P K,Jain S L. Glycerol Ingrained Copper: an Efficient Recyclable Catalyst for the N-Arylation of Amines with Aryl Halides[J]. Tetrahedron Lett,2013,54:2740-2743. |
[1] | 孙驰贺, 刘柳辰, 文振中, 崔国民. 模板法制备La2O3/ZrO2复合氧化物及其催化小桐子油合成生物柴油[J]. 应用化学, 2014, 31(11): 1323-1329. |
[2] | 张维东, 廖功泰, 余蕾, 解正峰. 介孔分子筛MCM-41固载多氮杂环席夫碱与醋酸钴共同催化的Henry反应[J]. 应用化学, 2014, 31(10): 1195-1202. |
[3] | 李梦婷, 刘海城, 曾星, 徐孝南, 邹晓梅, 华英杰, 王崇太. Keggin型铬取代杂多阴离子/D301R可见光催化性能[J]. 应用化学, 2014, 31(08): 965-970. |
[4] | 苏浩, 杨春. 多金属氧酸盐催化苯甲醇的选择性氧化:一个绿色可循环的高效催化氧化体系[J]. 应用化学, 2014, 31(08): 958-964. |
[5] | 刘丽君, 慈英倩, 王齐聊, 龚树文, 崔庆新. 二氧化硅负载磷钼钒酸铯选择性催化硝化苯酚为邻硝基苯酚[J]. 应用化学, 2014, 31(07): 817-822. |
[6] | 沙莎, 李军, 庄长福, 刘术侠, 高爽. 后修饰法合成介孔钴金属有机框架及其催化烯烃环氧化[J]. 应用化学, 2014, 31(07): 799-805. |
[7] | 赵洋, 蔚辰刚, 周强, 吴周安, 王树华, 罗孟飞. Y-Mg-Al-F催化剂用于1,1,1,2-四氟乙烷裂解制备三氟乙烯[J]. 应用化学, 2014, 31(04): 400-405. |
[8] | 王庆元, 姜洪泉, 李井申, 王巧凤, 李振宇. Sm-N-P-TiO2纳米光催化剂在模拟太阳光下光催化降解4-氯酚的动力学[J]. 应用化学, 2014, 31(03): 310-315. |
[9] | 冯辉霞, 高晓红, 陈娜丽, 段玲玲, 张娟, 李汉峰. 钴-席夫碱-壳聚糖/凹凸棒土对苯乙烯环氧化的催化性能[J]. 应用化学, 2014, 31(02): 159-164. |
[10] | 潘喜强, 杨向光. 不同晶型氧化锆对Pd/ZrO2催化剂活性和稳定性影响[J]. 应用化学, 2014, 31(02): 177-181. |
[11] | 段正超, 王联芝, 左晓宇, 屈桃李, 胡向平, 郑卓. WalPhos配体/铑配合物对β,γ-不饱和膦酸酯的不对称催化氢化[J]. 应用化学, 2014, 31(02): 242-244. |
[12] | 谢铭宇, 李若飞, 贾雪, 田黎黎, 夏新年. 嫁接Al改性MCM-41介孔分子筛催化合成双酚F[J]. 应用化学, 2014, 31(02): 153-158. |
[13] | 孟志, 褚岩凤, 姜鹏. 吡啶-2-甲酸锰(Ⅱ)配合物催化环氧化合成氟环唑的绿色方法[J]. 应用化学, 2014, 31(01): 120-122. |
[14] | 喻龙宝, 徐虎, 施亚玉, 张文鹏, 殷恒波, 张雄飞. Schiff碱改性法制备SBA-15型介孔分子筛负载的纳米氧化镍[J]. 应用化学, 2013, 30(10): 1163-1168. |
[15] | 包卓然, 霍晓敏, 孙立冬, 孙琪, 石雷. 铁促进的Cu/SiO2-Al2O3催化剂上高效气相合成3-甲基吲哚[J]. 应用化学, 2013, 30(10): 1156-1162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||