1 |
HOMMES A, HEERES H J, YUE J. Catalytic transformation of biomass derivatives to value-added chemicals and fuels in continuous flow microreactors[J]. ChemCatChem, 2019, 11(19): 4671-4708.
|
2 |
MIKA L T, CSÉFALVAY E, NÉMETH Á. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev, 2018, 118(2): 505-613.
|
3 |
UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective[J]. Chem Rev, 2016, 116(4): 2275-2306.
|
4 |
LI N, ZONG M H. (Chemo)biocatalytic upgrading of biobased furanic platforms to chemicals, fuels, and materials: a comprehensive review[J]. ACS Catal, 2022, 12(16): 10080-10114.
|
5 |
LIU S, GOVINDARAJAN N, CHAN K. Understanding activity trends in furfural hydrogenation on transition metal surfaces[J]. ACS Catal, 2022, 12(20): 12902-12910.
|
6 |
LU G H, ZONG M H, LI N. Combining electro-, photo-, and biocatalysis for one-pot selective conversion of furfural into value-added C4 chemicals[J]. ACS Catal, 2023, 13(2): 1371-1380.
|
7 |
QI H, YANG J, LIU F, et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones[J]. Nat Commun, 2021, 12(1): 3295.
|
8 |
SUN R, XIAO L, WU W. In-situ carbon-encapsulated Ni2P@C catalysts for reductive amination of furfural[J]. Mol Catal, 2024, 553: 113710.
|
9 |
YANG Y Z, ZHOU L L, WANG X C, et al. Catalytic reductive amination of furfural to furfurylamine on robust ultra-small Ni nanoparticles[J]. Nano Res, 2023, 16(3): 3719-3729.
|
10 |
YOGITA, RAO K T V, KUMAR P M, et al. Cobalt nanoparticles embedded in a nitrogen-doped carbon matrix for reductive amination of biomass-derived furfural to furfurylamine[J]. Sustain Energy Fuels, 2022, 6(20): 4692-4705.
|
11 |
ISHIKAWA H, YAMAGUCHI S, MIZUGAKI T, et al. Highly active and sulfur-tolerant ruthenium phosphide catalyst for efficient reductive amination of carbonyl compounds[J]. ACS Catal, 2024, 14(7): 4501-4509.
|
12 |
GONG H, WEI L, LI Q, et al. Electron-rich Ru supported on N-doped coffee biochar for selective reductive amination of furfural to furfurylamine[J]. Langmuir, 2024, 40(17): 8950-8960.
|
13 |
XU G, TU Z, HU X, et al. Supported ruthenium catalysts with electronic effect and acidity-basicity for efficient reductive amination of biomass-based carbonyl compounds[J]. Chem Eng J, 2024, 481: 148704.
|
14 |
YUAN Z, LIU B, ZHOU P, et al. Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination[J]. J Catal, 2019, 370: 347-356.
|
15 |
SHENG M, FUJITA S, YAMAGUCHI S, et al. Single-crystal cobalt phosphide nanorods as a high-performance catalyst for reductive amination of carbonyl compounds[J]. JACS Au, 2021, 1(4): 501-507.
|
16 |
DONG C, WU Y, WANG H, et al. Facile and efficient synthesis of primary amines via reductive amination over a Ni/Al2O3 catalyst[J]. ACS Sustainable Chem Eng, 2021, 9(21): 7318-7327.
|
17 |
LE G, XIE L, WANG Y, et al. Efficient conversion of furfural to furfural amine over 4Ru1Co/AC catalyst[J]. Appl Catal A, 2022, 647: 118902.
|
18 |
GAO Z, CAI L, MA H, et al. Dual scale hydrogen transfer bridge construction for biomass tandem reductive amination[J]. ACS Catal, 2023, 13(19): 12835-12847.
|
19 |
WEI Y, MA Z, LIU B, et al. Phase transition induced hydrogen activation for enhanced furfural reductive amination over a CoCu bimetallic catalyst[J]. Chem Sci, 2024, 15(48): 20338-20345.
|
20 |
WU Y, XU D, XU Y, et al. Ru clusters anchored on N-doped porous carbon-alumina matrix as efficient catalyst toward primary amines via reductive amination[J]. Appl Catal B, 2024, 343: 123462.
|
21 |
AL-DUGHAITHER A S, DE LASA H. HZSM-5 zeolites with different SiO2/Al2O3 ratios. characterization and NH3 desorption kinetics[J]. Ind Eng Chem Res, 2014, 53(40): 15303-15316.
|
22 |
ZOU H, JIN Y, CHEN L, et al. Encapsulating Ru nanoclusters for reductive imination of biomass-based furfural by shape-selective catalysis[J]. ACS Catal, 2025, 15(3): 2017-2032.
|
23 |
SHI Y, LI Z, WANG J, et al. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation[J]. Appl Catal B, 2021, 286: 119936.
|
24 |
WANG Y, WANG G, VAN DER WAL L I, et al. Visualizing element migration over bifunctional metal-zeolite catalysts and its impact on catalysis[J]. Angew Chem Int Ed, 2021, 60(32): 17735-17743.
|