应用化学 ›› 2025, Vol. 42 ›› Issue (9): 1221-1232.DOI: 10.19894/j.issn.1000-0518.250015
收稿日期:2025-01-07
接受日期:2025-07-17
出版日期:2025-09-01
发布日期:2025-09-28
通讯作者:
唐毓婧
基金资助:
Long ZHOU, Yu-Jing TANG(
), Yi-Jing JIA, Xiao-Min LI, Ying-Nan DENG, Si-Jia WEI
Received:2025-01-07
Accepted:2025-07-17
Published:2025-09-01
Online:2025-09-28
Contact:
Yu-Jing TANG
About author:tangyj.bjhy@sinopec.comSupported by:摘要:
利用差示扫描量热法(DSC)研究了3种不同乙烯摩尔分数(分别为32%、38%和44%)的乙烯-乙烯醇共聚物(EVOH)的热力学和等温结晶动力学。利用Hoffman-Weeks作图法得到了EVOH平衡熔点,随着乙烯摩尔分数的增加,EVOH的平衡熔点降低。采用Avrami方程研究EVOH的结晶动力学,数据表明3种EVOH在主期结晶阶段均呈现二维、三维混合生长特征,而在次期结晶阶段则表现为一维生长。折叠面自由能的计算表明,乙烯摩尔分数的增加对EVOH的分子链折叠具有阻碍作用,且使其长结晶链段难以形成,故在低过冷度条件下,EVOH的结晶速率随着乙烯摩尔分数的增加呈现减缓趋势。根据Hoffmann-Lauritzen理论得到了线性生长速率和结晶温度的依赖性关系的外推曲线。外推3种不同乙烯摩尔分数EVOH的结晶速率在约135 ℃发生反转,分别在112、104和101 ℃具有最快的结晶速率。
中图分类号:
周陇, 唐毓婧, 贾轶静, 李晓敏, 邓莹楠, 魏思佳. 乙烯-乙烯醇共聚物的等温结晶动力学[J]. 应用化学, 2025, 42(9): 1221-1232.
Long ZHOU, Yu-Jing TANG, Yi-Jing JIA, Xiao-Min LI, Ying-Nan DENG, Si-Jia WEI. Isothermal Crystallization Kinetics of Ethylene Vinyl Alcohol Copolymer[J]. Chinese Journal of Applied Chemistry, 2025, 42(9): 1221-1232.
| Sample | Tm/℃ | Tc/℃ | Tg/℃ | ΔHm/(J·g-1) | ΔHc/(J·g-1) | Xc/% |
|---|---|---|---|---|---|---|
| F171B | 182.31 | 157.48 | 60.30 | 69.80 | 65.35 | 44.23 |
| H171B | 172.05 | 150.52 | 56.10 | 66.55 | 62.22 | 42.17 |
| E105B | 168.29 | 148.50 | 54.53 | 63.13 | 60.29 | 40.00 |
表1 F171B、H171B和E105B的热力学信息
Table 1 Thermodynamic information of F171B, H171B and E105B
| Sample | Tm/℃ | Tc/℃ | Tg/℃ | ΔHm/(J·g-1) | ΔHc/(J·g-1) | Xc/% |
|---|---|---|---|---|---|---|
| F171B | 182.31 | 157.48 | 60.30 | 69.80 | 65.35 | 44.23 |
| H171B | 172.05 | 150.52 | 56.10 | 66.55 | 62.22 | 42.17 |
| E105B | 168.29 | 148.50 | 54.53 | 63.13 | 60.29 | 40.00 |
图3 EVOH样品(A)F171, (B)H171B, (C)E105B的第2次加热的DSC曲线;D.平衡熔点(F171B (219.6 ℃), H171B (218.7 ℃), E105B (216.8 ℃))
Fig.3 DSC curves of EVOH samples (A)F171B, (B)H171B, (C)E105B for secondary heating; D. Equilibrium melting temperatures of F171B (219.6 ℃), H171B (218.7 ℃) and E105B (216.8 ℃)
图4 3个EVOH样品的等温结晶热流曲线和相对结晶度A, B. F171B; C, D. H171B; E, F. E105B
Fig.4 Heat flow curve of isothermal crystallization and relative crystallinity of 3 EVOH samples
| Crystal growth pattern | Heterogeneous nucleation | Homogeneous nucleation |
|---|---|---|
| One-dimensional growth (acicular crystal) | 1 | 2 |
| Two-dimensional growth (lamellar crystal) | 2 | 3 |
| Three-dimensional growth (spherocrystal) | 3 | 4 |
表2 不同成核和生长机制的Avrami指数理论值[27]
Table 2 Theoretical values of Avrami index for different nucleation and growth mechanisms[27]
| Crystal growth pattern | Heterogeneous nucleation | Homogeneous nucleation |
|---|---|---|
| One-dimensional growth (acicular crystal) | 1 | 2 |
| Two-dimensional growth (lamellar crystal) | 2 | 3 |
| Three-dimensional growth (spherocrystal) | 3 | 4 |
图5 (A) F171B、(B) H171B和(C) E105B的相对结晶度在3%~100%的Avrami方程分析; (D) 3种EVOH的t1/2和过冷度(Tm0-Tiso)的关系
Fig.5 Avrami analysis of the (A) F171B, (B) H171B and (C) E105B for X(t) between 3% and 100%; (D) Super cooling degree dependent of t1/2 for F171B, H171B and E105B
| Sample | Tiso/℃ | Primary crystallization | Secondary crystallization | t1/2/min | ||
|---|---|---|---|---|---|---|
| n1 | K1/min-1 | n2 | K2/min-1 | |||
| F171B | 164 | 2.56 | 0.046 | 1.22 | 0.383 | 2.88 |
| 165 | 2.46 | 0.023 | 1.18 | 0.213 | 4.17 | |
| 166 | 2.63 | 0.004 | 1.16 | 0.098 | 7.98 | |
| 167 | 2.33 | 0.003 | 1.21 | 0.044 | 12.20 | |
| H171B | 158 | 2.70 | 0.105 | 1.10 | 0.318 | 2.53 |
| 159 | 2.54 | 0.043 | 1.12 | 0.186 | 3.75 | |
| 160 | 2.71 | 0.011 | 1.19 | 0.083 | 6.90 | |
| 161 | 2.46 | 0.003 | 1.05 | 0.054 | 12.40 | |
| E105B | 155 | 2.58 | 0.208 | 1.09 | 0.431 | 1.90 |
| 156 | 2.72 | 0.064 | 1.09 | 0.245 | 3.05 | |
| 157 | 2.53 | 0.025 | 0.98 | 0.178 | 4.95 | |
| 158 | 2.34 | 0.007 | 1.17 | 0.047 | 10.25 | |
表3 F171B、H171B和E105B的结晶动力学参数
Table 3 Crystallization kinetics parameters of F171B, H171B and E105B
| Sample | Tiso/℃ | Primary crystallization | Secondary crystallization | t1/2/min | ||
|---|---|---|---|---|---|---|
| n1 | K1/min-1 | n2 | K2/min-1 | |||
| F171B | 164 | 2.56 | 0.046 | 1.22 | 0.383 | 2.88 |
| 165 | 2.46 | 0.023 | 1.18 | 0.213 | 4.17 | |
| 166 | 2.63 | 0.004 | 1.16 | 0.098 | 7.98 | |
| 167 | 2.33 | 0.003 | 1.21 | 0.044 | 12.20 | |
| H171B | 158 | 2.70 | 0.105 | 1.10 | 0.318 | 2.53 |
| 159 | 2.54 | 0.043 | 1.12 | 0.186 | 3.75 | |
| 160 | 2.71 | 0.011 | 1.19 | 0.083 | 6.90 | |
| 161 | 2.46 | 0.003 | 1.05 | 0.054 | 12.40 | |
| E105B | 155 | 2.58 | 0.208 | 1.09 | 0.431 | 1.90 |
| 156 | 2.72 | 0.064 | 1.09 | 0.245 | 3.05 | |
| 157 | 2.53 | 0.025 | 0.98 | 0.178 | 4.95 | |
| 158 | 2.34 | 0.007 | 1.17 | 0.047 | 10.25 | |
图7 3种晶体生长模式: A. 高温段, B. 中温段, C. 低温段,其中阴影部分表示生长表面,白色方块表示折叠的链茎横截面
Fig.7 3 crystal growth modes: A. Regime Ⅰ, B. Regime Ⅱ, C. Regime Ⅲ, where the shaded part represents the growing surface and the white square represents the folded chain stem cross section
| Sample | Kg/K2 | G0/min-1 | σ/(J·m-2) | σF/(J·m-2) |
|---|---|---|---|---|
| F171B | 7.29×105 | 7.19×1015 | 0.013 | 0.313 |
| H171B | 9.45×105 | 9.51×1018 | 0.013 | 0.405 |
| E105B | 9.92×105 | 6.32×1019 | 0.012 | 0.426 |
表4 F171B、H171B和E105B的侧面和折叠面自由能计算值
Table 4 Calculated value of lateral and fold surface free energy for F171B, H171B and E105B
| Sample | Kg/K2 | G0/min-1 | σ/(J·m-2) | σF/(J·m-2) |
|---|---|---|---|---|
| F171B | 7.29×105 | 7.19×1015 | 0.013 | 0.313 |
| H171B | 9.45×105 | 9.51×1018 | 0.013 | 0.405 |
| E105B | 9.92×105 | 6.32×1019 | 0.012 | 0.426 |
图9 乙烯摩尔分数对EVOH结晶的影响。蓝球代表EVOH的乙烯醇重复单元,灰球代表乙烯重复单元。EVOH的结晶由浅橙色区域表示,浅灰色区域为无定形区
Fig.9 Effect of ethylene content on EVOH crystallization. The blue balls represent VA repeating unit of EVOH, and the gray balls represent ET repeating unit. The crystalline of EVOH is represented by light orange areas, and light gray areas are amorphous
| [1] | NAKANO A. Ethylene vinyl alcohol co-polymer as a high-performance membrane: an EVOH membrane with excellent biocompatibility[J]. High-perform Membr Dialyzers, 2011, 173: 164-171. |
| [2] | FENG Y, EUN J, MOON S, et al. Assessment of gas dispersion near an operating landfill treated by different intermediate covers with soil alone, low-density polyethylene (LLDPE), or ethylene vinyl alcohol (EVOH) geomembrane[J]. Environ Sci Pollut Res, 2023, 30(4): 9672-9687. |
| [3] | MAES C, LUYTEN W, HERREMANS G, et al. Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): a review[J]. Polym Rev, 2018, 58(2): 209-246. |
| [4] | MARCONI W, MARCONE R, PIOZZI A. Sulfation and preliminary biological evaluation of ethylene-vinyl alcohol copolymers[J]. Macromol Chem Phys, 2000, 201(6): 715-721. |
| [5] | MURIEL-GALET V, TALBERT J N, HERNANDEZ-MUNOZ P, et al. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications[J]. J Agric Food Chem, 2013, 61(27): 6720-6727. |
| [6] | LI Z L, LV A, LI L, et al. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: synthesis, characterization, and thermal property[J]. Polymer, 2013, 54(15): 3841-3849. |
| [7] | SHI C, TANG Y, LU Y, et al. Crystallization kinetics of ethylene vinyl alcohol copolymer revealed by fast scanning chip calorimetry analysis[J]. Macromolecules, 2023, 56(18): 7597-7605. |
| [8] | MOKWENA K K, TANG J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods[J]. Crit Rev Food Sci Nutr, 2012, 52(7): 640-650. |
| [9] | MOKWENA K K, TANG J, LABORIE M P. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films[J]. J Food Eng, 2011, 105(3): 436-443. |
| [10] | ZHANG Z, BRITT I J, TUNG M A. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity[J]. J App Polym Sci, 2001, 82(8): 1866-1872. |
| [11] | MYRAMATSU M, OKURA M, KUBOYAMA K, et al. Oxygen permeability and free volume hole size in ethylene-vinyl alcohol copolymer film: temperature and humidity dependence[J]. Radiat Phys Chem, 2003, 68(3/4): 561-564. |
| [12] | VANNINI M, MARCHESE P, CELLI A, et al. Strategy to modify the crystallization behavior of EVOH32 through interactions with low-molecular-weight molecules[J]. Ind Eng Chem Res, 2016, 55(12): 3517-3524. |
| [13] | NAKAMAE K, KAMEYAMA M, MATSUMOTO T. Elastic moduli of the crystalline regions in the direction perpendicular to the chain axis of ethylene‐vinyl alcohol copolymers[J]. Polym Eng Sci, 1979, 19(8): 572-578. |
| [14] | CERRADA M L, PEREZ E, PERENA J M, et al. Wide-angle X-ray diffraction study of the phase behavior of vinyl alcohol-ethylene copolymers[J]. Macromolecules, 1998, 31(8): 2559-2564. |
| [15] | LAGARON J M, CATALA R, GAVARA R. Structural characteristics defining high barrier properties in polymeric materials[J]. Mater Sci Technol, 2004, 20(1): 1-7. |
| [16] | TAKAHASHI M, TASHIRO K, AMIYA S. Crystal structure of ethylene-vinyl alcohol copolymers[J]. Macromolecules, 1999, 32(18): 5860-5871. |
| [17] | DJEZZAR K, PENEL L, LEFEBVRE J M, et al. Tensile drawing of ethylene/vinyl-alcohol copolymers. part 1. influence of draw temperature on the mechanical behaviour[J]. Polymer, 1998, 39(17): 3945-3953. |
| [18] | PENEL L, DJEZZAR K, LEFEBVRE J M, et al. Tensile drawing of ethylene/vinyl alcohol copolymers: II. investigation of the strain-induced mesomorphic structure[J]. Polymer, 1998, 39(18): 4279-4287. |
| [19] | El-SAFTAWY A A, RAGHEB M S, ZAKHARY S G. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer[J]. Radiat Phys Chem, 2018, 147: 106-113. |
| [20] | LOPEZ DE DICASTILLO C, NERIN C, ALFARO P, et al. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract[J]. J Agric Food Chem, 2011, 59(14): 7832-7840. |
| [21] | ALVAREZ V A, KENNY J M, VAZQUEZ A. Isothermal crystallization of poly(vinyl alcohol-co-ethylene)[J]. J App Polym Sci, 2003, 89(4): 1071-1077. |
| [22] | MARAND H, XU J, SRINIVAS S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations[J]. Macromolecules, 1998, 31(23): 8219-8229. |
| [23] | XIE Z N, YE H M, CHEN T, et al. Melting and annealing peak temperatures of poly(butylene succinate) on the same Hoffman-Weeks plot parallel to Tm= Tc line[J]. Chin J Polym Sci, 2021, 39: 745-755. |
| [24] | POURALI M, PETERSON A M. A tale of two polyamides: comparing the crystallization kinetics of a hot-melt adhesive and a PA 6/66 copolymer[J]. Thermochim Acta, 2022, 710: 179176. |
| [25] | PATEL R M. Crystallization kinetics modeling of high density and linear low density polyethylene resins[J]. J App Polym Sci, 2012, 124(2): 1542-1552. |
| [26] | GODOVSKY Y K, SLONIMSKY G L. Kinetics of polymer crystallization from the melt (calorimetric approach)[J]. J Polym Sci: Polym Phys Ed, 1974, 12(6): 1053-1080. |
| [27] | 杨海, 刘天西. 聚合物结晶动力学[J]. 南阳师范学院学报, 2007(12): 37-40, 51. |
| YANG H, LIU T X. Crystallization kinetics of polymers[J]. J Nanyang Norm Univ, 2007(12): 37-40, 51. | |
| [28] | 任敏巧, 张志英, 莫志深, 等. 高聚物结晶后期动力学过程的研究进展[J]. 高分子通报, 2003(3): 15-22. |
| REN M Q, ZHANG Z Y, MO Z S, et al. The development of research on the later stage kinetics in polymer crystallization[J]. Polym Bull, 2003(3): 15-22. | |
| [29] | 张垚, 唐毓婧, 宋建会, 等. 乙烯-乙烯醇共聚物的连续自成核退火热分级研究[J]. 石油化工, 2022, 51(10): 1175-1181. |
| ZHANG Y, TANG Y J, SONG J H, et al. Successive self-nucleation and annealing thermal fractionation study of ethylene-vinyl alcohol copolymer[J]. Petrochem Technol, 2022, 51(10): 1175-1181. | |
| [30] | FRANCO-URQUIZA E A, SANTANA O, MASPOCH M L. Influence of the melt extrusion process on the mechanical behavior and the thermal properties of ethylene vinyl alcohol copolymer by applying the successive self-nucleation and annealing thermal fractionation[J]. Fiber Polym, 2021, 22(7): 1822-1829. |
| [31] | 周阳. 基于戊二胺的生物基长碳链尼龙的合成与性能研究[D]. 北京: 北京化工大学, 2023. |
| ZHOU Y. Study on the synthesis and properties of bio-based long carbon chain nylon with cadaverine[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [32] | VYAZOVKIN S. Activation energies and temperature dependencies of the rates of crystallization and melting of polymers[J]. Polymers, 2020, 12(5): 1070. |
| [33] | 陈宁, 胡继锋, 李莉. 长链乙烯酯改性聚乙烯醇的结晶动力学[J]. 合成树脂及塑料, 2017, 34(4): 1-5. |
| CHEN N, HU J F, LI L. Crystallization kinetics of MPVA modified by long chains vinyl ester[J]. China Synth Resin Plastics, 2017,34(4):1-5. | |
| [34] | LIU M Y, ZHAO Q X, WANG Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polym, 2003, 44(8): 2537-2545. |
| [35] | 严大东, 张兴华. 聚合物结晶理论进展[J]. 物理学报, 2016, 65(18): 106-116. |
| YAN D D, ZHANG X H. Recent development on the theory of polymer crystallization[J]. Acta Phys Sin, 2016, 65(18): 106-116. | |
| [36] | WANG B, DING Z, HU G. Melting behavior and isothermal crystallization kinetics of nylon 11/EVOH/dicumyl peroxide blends[J]. Polym Eng Sci, 2008, 48(12): 2354-2361. |
| [37] | HAO B, DING Z, TAO X, et al. Atomic-scale imaging of polyvinyl alcohol crystallinity using electron ptychography[J]. Polymer, 2023, 284: 126305. |
| [38] | LOPEZ-RUBIO A, LAGARON J M, GIMENEZ E, et al. Morphological alterations induced by temperature and humidity in ethylene-vinyl alcohol copolymers[J]. Macromolecules, 2003, 36(25): 9467-9476. |
| [39] | LAURITZEN JR J I, HOFFMAN J D. Extension of theory of growth of chain‐folded polymer crystals to large undercoolings[J]. J Appl Phys, 1973, 44(10): 4340-4352. |
| [40] | SU G, ZHOU T, LIU X, et al. Two-dimensional correlation infrared spectroscopy reveals the detailed molecular movements during the crystallization of poly(ethylene-co-vinyl alcohol)[J]. RSC Adv, 2015, 5(103): 84729-84745. |
| [1] | 何玉芳, 颜品萍, 黄宝铨, 罗富彬, 李红周, 钱庆荣, 陈庆华. 聚乙二醇/氮化硼复合材料相变导热性能及其结晶行为[J]. 应用化学, 2020, 37(6): 650-657. |
| [2] | 唐龙祥, 严满清, 刘春华, 王平华. 交联聚乙烯的结晶行为研究[J]. 应用化学, 2009, 26(09): 1019-1022. |
| [3] | 聂康明, 庞文民, 鲁非, 朱清仁. 非共价键合杂化体系中聚己内酯的非等温结晶动力学[J]. 应用化学, 2005, 22(10): 1100-1103. |
| [4] | 王平华, 徐国永. 聚丙烯/凹凸棒土纳米复合材料的非等温结晶动力学[J]. 应用化学, 2004, 21(8): 783-787. |
| [5] | 徐卫兵, 梁国栋, 杭国培, 何平笙. 聚丙烯/聚(丙烯-g-马来酸酐)/蒙脱土纳米复合材料结晶动力学研究[J]. 应用化学, 2002, 19(8): 754-758. |
| [6] | 徐卫兵, 戈明亮, 何平笙. 聚甲醛/蒙脱土纳米复合材料非等温结晶动力学研究[J]. 应用化学, 2001, 18(9): 721-725. |
| [7] | 龚方红, 李锦春, 俞强, 林明德. 交联方法对交联聚乙烯结晶行为的影响[J]. 应用化学, 1998, 0(5): 31-34. |
| [8] | 曲桂杰, 唐功本, 杨玉华, 刘景江. 浇铸尼龙-6的结晶与熔融[J]. 应用化学, 1995, 0(2): 76-79. |
| [9] | 刘景江, 唐功本, 曲桂杰, 周华荣, 郭其鹏. 稀土氧化物对聚丙烯等温结晶动力学的影响[J]. 应用化学, 1992, 0(6): 26-30. |
| [10] | 朱诚身, 王经武, 蒲帅夭, 李华光, 李修道. 尼龙1010球晶的熔融[J]. 应用化学, 1992, 0(1): 32-36. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||