
应用化学 ›› 2025, Vol. 42 ›› Issue (3): 353-364.DOI: 10.19894/j.issn.1000-0518.240260
收稿日期:
2024-08-12
接受日期:
2025-02-06
出版日期:
2025-03-01
发布日期:
2025-04-11
通讯作者:
谈东兴,韩福社
Hong-Yu SHI1,2, Dong-Xing TAN1(), Fu-She HAN1,2(
)
Received:
2024-08-12
Accepted:
2025-02-06
Published:
2025-03-01
Online:
2025-04-11
Contact:
Dong-Xing TAN,Fu-She HAN
About author:
fshan@ciac.ac.cn摘要:
设计合成了3个由柔性酰胺或酯链连接的双-三苯胺类有机小分子1-3,通过电化学聚合(Electrochemical polymerization, EP)方法制备得到相应的电化学聚合物膜,并对小分子和聚合物的光致(Photoluminescence, PL)和电化学发光(Electrochemiluminescence, ECL)性质进行了研究。 3个小分子化合物的溶液、固体以及聚合物均在407~468 nm的蓝光区表现出强的光致发光,在CH2Cl2中的相对荧光量子产率分别为77%、97%和84%。 以三丙胺为共反应物,3个化合物的小分子固体薄膜具有一般至良好的ECL,相对量子产率分别为0.52%、55.58%和16.82%。 对比发现,化合物2的光致和电化学发光最强,而化合物1的最弱。 基于变浓度1H NMR分析,化合物1存在较强的分子间氢键,而化合物2存在较强的分子内氢键,发光效率的差异可能是由分子内和分子间不同氢键作用模式引起的。 最后,研究了化合物2的小分子固体薄膜和EP膜在电化学发光检测方面的应用,发现对多巴胺(DA)具有检测性能,最低检出限分别为0.43和1.51 μmol/L。
中图分类号:
史宏宇, 谈东兴, 韩福社. 柔性链连接的双-三苯胺类小分子和电化学聚合物的合成及其发光和电化学性能[J]. 应用化学, 2025, 42(3): 353-364.
Hong-Yu SHI, Dong-Xing TAN, Fu-She HAN. Synthesis, Luminescence and Electrochemical Properties of Bis-Triphenylamine-Based Small Molecules and Electrochemical Polymers Connected by Flexible Chains[J]. Chinese Journal of Applied Chemistry, 2025, 42(3): 353-364.
图2 在含有0.1 mol/L TBAP的CH2Cl2溶液中,室温且Ar保护的条件下,化合物(A)1、(B)2、(C)3的循环伏安曲线(第1和第2圈)和化合物(D)1、(E)2、(F)3的循环伏安曲线(第1到第15圈)。 以扫描速度为100 mV/s在0和1.60 V之间正向扫描
Fig.2 CV profiles (1st and 2nd cycle) of compounds 1 (A), 2 (B) and 3 (C) and CV profiles (1st to 15th cycles) of compounds 1 (D), 2 (E) and 3 (F) in CH2Cl2 in the presence of TBAP (0.1 mol/L) electrolyte at room temperature under argon protection. Scan rate: 100 mV/s; Scan range: 0 to 1.60 V
Compounds | Eonset/V a | HOMO/eV | LUMO/eV | ||
---|---|---|---|---|---|
1 | 1.06 | -5.41 b /-4.86 c | -2.04 d /-1.03 c | 3.37 | 4.18 |
2 | 1.10 | -5.45/-5.17 | -2.13/-1.24 | 3.32 | 3.99 |
3 | 1.16 | -5.51/-5.57 | -2.16/-1.30 | 3.35 | 4.02 |
表1 化合物1-3在CH2Cl2(0.1 mol/L TBAP)中的电化学数据以及理论计算结果
Table 1 Electrochemical data and theoretical calculation results of compounds 1-3 in CH2Cl2 (0.1 mol/L TBAP)
Compounds | Eonset/V a | HOMO/eV | LUMO/eV | ||
---|---|---|---|---|---|
1 | 1.06 | -5.41 b /-4.86 c | -2.04 d /-1.03 c | 3.37 | 4.18 |
2 | 1.10 | -5.45/-5.17 | -2.13/-1.24 | 3.32 | 3.99 |
3 | 1.16 | -5.51/-5.57 | -2.16/-1.30 | 3.35 | 4.02 |
图3 化合物1(A、D)、2(B、E)和3(C、F)在不同极性溶剂中的归一化吸收和光致发射光谱
Fig.3 Normalized absorption and PL spectra of 1 (A, D), 2 (B, E) and 3 (C, F) in solvents with different polarities
Compounds | Solvents | λab/nm a | 10-4ε/(L·mol-1·cm-1) | λPL/nm b | Δλ/nm c |
---|---|---|---|---|---|
1 | n-Hex | 330/300 | 2.53/2.37 | 385 | 55 |
Tol | 332/308 | 4.09/3.68 | 410 | 78 | |
THF | 325/305 | 2.95/2.75 | 442 | 117 | |
DCM | 331/306 | 2.86/2.45 | 443 | 112 | |
DMF | 326/307 | 3.65/3.42 | 442 | 116 | |
2 | n-Hex | 331/302 | 2.08/1.73 | 402 | 71 |
Tol | 333/304 | 3.31/2.66 | 428 | 95 | |
THF | 330/304 | 2.94/2.65 | 447 | 117 | |
DCM | 334/305 | 3.93/3.00 | 462 | 128 | |
DMF | 330/305 | 3.36/2.82 | 467 | 137 | |
3 | n-Hex | 335/300 | 3.41/2.42 | 387 | 52 |
Tol | 341/304 | 4.01/2.70 | 415 | 74 | |
THF | 334/307 | 3.47/2.32 | 433 | 99 | |
DCM | 336/302 | 3.07/1.96 | 451 | 115 | |
DMF | 334/302 | 3.51/2.42 | 465 | 131 |
表2 化合物1-3在不同极性溶剂中的吸收(λab)和发射(λPL)数据
Table 2 The absorption (λab) and emission (λPL) date of compounds 1-3 in different solvents
Compounds | Solvents | λab/nm a | 10-4ε/(L·mol-1·cm-1) | λPL/nm b | Δλ/nm c |
---|---|---|---|---|---|
1 | n-Hex | 330/300 | 2.53/2.37 | 385 | 55 |
Tol | 332/308 | 4.09/3.68 | 410 | 78 | |
THF | 325/305 | 2.95/2.75 | 442 | 117 | |
DCM | 331/306 | 2.86/2.45 | 443 | 112 | |
DMF | 326/307 | 3.65/3.42 | 442 | 116 | |
2 | n-Hex | 331/302 | 2.08/1.73 | 402 | 71 |
Tol | 333/304 | 3.31/2.66 | 428 | 95 | |
THF | 330/304 | 2.94/2.65 | 447 | 117 | |
DCM | 334/305 | 3.93/3.00 | 462 | 128 | |
DMF | 330/305 | 3.36/2.82 | 467 | 137 | |
3 | n-Hex | 335/300 | 3.41/2.42 | 387 | 52 |
Tol | 341/304 | 4.01/2.70 | 415 | 74 | |
THF | 334/307 | 3.47/2.32 | 433 | 99 | |
DCM | 336/302 | 3.07/1.96 | 451 | 115 | |
DMF | 334/302 | 3.51/2.42 | 465 | 131 |
图5 化合物1(A)、2(B)和3(C)在不同水体积分数(φ(water))的THF/水混合溶剂中的光致发射光谱。 化合物1-3的相对光致发射强度(I/I0)与水体积分数(φ(water))的关系图(D)。 I0代表纯THF中的发射强度。 溶液浓度为10 μmol/L
Fig.5 PL spectra of compounds 1 (A), 2 (B) and 3 (C) in THF/water mixtures with different water volume fractions (φ(water)). Plots of the relative PL intensity (I/I0 ) versus water volume fractions (φ(water)) of compounds 1, 2 and 3 (D). I0 denotes emission intensity in pure THF. Concentration: 10 μmol/L
图6 化合物1-3固体(A)和EP膜(B)的光致发射光谱。 插图: 固体和EP膜在365 nm紫外灯下的照片
Fig.6 PL emission spectra of solid (A) and EP films (B) of compounds 1-3. Insert: solid and EP films under UV light of 365 nm
图8 化合物1(A)、2(B)和3(C)的固体薄膜的ECL稳定性谱图; 固体薄膜的ECL光谱(D), PMT=800 V
Fig.8 ECL stability of the solid films of compounds 1 (A), 2 (B) and 3 (C); ECL spectra of the solid films (D), PMT=800 V
图9 (A、D)固体薄膜和EP膜的I0/(I-1)和DA浓度的Stern-Volmer图。 (B、E)固体薄膜和EP膜的ECL和DA浓度的线性图。 (C、F)加入(红色)和未加入(黑色)100 μmol/L DA时的固体薄膜和EP膜的ECL强度a. Without testing substance added; b. With the addition of DA (100 μmol/L); c. With the addition of AA (100 μmol/L); d. With the addition of DA (100 μmol/L) and AA (100 μmol/L); e. With the addition of UA (100 μmol/L); f. With the addition of DA (100 μmol/L) and UA (100 μmol/L)
Fig.9 Stern-Volmer charts of I0/(I-1) of the solid and EP film versus the concentration of DA (A, D). The linear plots of the solid and EP film between the ECL intensity and the DA concentration (B, E). ECL intensity of the solid and EP film with different analytes with (red) and without (black) the addition of 100 μmol/L DA (C, F)
1 | XU Z. Mechanism and application of aggregation induced luminescence compounds[J]. IOP Conf Ser: Earth Environ Sci,2021, 680(1): 012073-012089. |
2 | DUAN J, PAN H, WEI C, et al. Synthesis and physical properties of triphenylamine-functionalized twistacenes: blue-emitting fluorophores[J]. RSC Adv,2017, 7(17): 10570-10574. |
3 | OZDEMIR A, ERDEMIR S. Phenanthroimidazole and dicyanovinyl-substituted triphenylamine for the selective detection of CN-: DFT calculations and practically applications[J]. J Photochem Photobiol A-Chem,2020, 390: 112328-112334. |
4 | QIU Q, XU P, ZHU Y, et al. Rational design of dual-state emission luminogens with solvatochromism by combining a partially shared donor-acceptor pattern and twisted structures[J]. Chem-A Europ J,2019, 25(70): 15983-15987. |
5 | POLO F, RIZZO F, VEIGA-GUTIERREZ M, et al. Efficient greenish blue electrochemiluminescence from fluorene and spirobifluorene derivatives[J]. J Am Chem Soc,2012, 134(37): 15402-15409. |
6 | RIZZO F, POLO F, BOTTARO G, et al. From blue to green: fine-tuning of photoluminescence and electrochemiluminescence in bifunctional organic dyes[J]. J Am Chem Soc,2017, 139(5): 2060-2069. |
7 | TANG S, LIU M, GU C, et al. Synthesis and electrochemical properties of peripheral carbazole functional ter(9,9-spirobifluorene)s[J]. J Org Chem,2008, 73(11): 4212-4218. |
8 | KIM Y H, ZHAO Q, KWON S K. Synthesis and characterization of poly(fluorene)-based copolymer containing triphenylamine group[J]. J Polym Sci Pol Chem,2006, 44(1): 172-182. |
9 | SUN M, LI J, LI B, et al. Toward high molecular weight triphenylamine-based hyperbranched polymers[J]. Macromolecules,2005, 38(7): 2651-2658. |
10 | BRADY S, LAU K T, MEGILL W, et al. The development and characterisation of conducting polymeric-based sensing devices[J]. Synth Met,2005, 154(1): 25-28. |
11 | MIHAI I, IVANOIU M, VACAREANU L, et al. Polyazomethines with triphenylamine groups synthesized by suzuki polycondensation reactions[J]. Des Monomers Polym,2012, 15(1): 41-52. |
12 | NOMURA M, SHIBASAKI Y, UEDA M, et al. Synthesis and properties of poly[di(1-naphthyl)-4-tolylamine] as a hole transport material[J]. Macromolecules,2004, 37(4): 1204-1210. |
13 | HA J, VACHA M, KHANCHAITIT P, et al. Synthesis and characterization of novel light-emitting copolymers containing triphenylamine derivatives[J]. Synth Met,2004, 144(2): 151-158. |
14 | XU L, ZHAO Y, LONG G, et al. Synthesis, structure, physical properties and OLED application of pyrazine-triphenylamine fused conjugated compounds[J]. RSC Adv, 2015, 5(77): 63080-63086. |
15 | LI S, HUANG D, WAN J, et al. A two-photon fluorescent probe derived from spirobifluorene for fast sensing of hypochlorite and mercury ions[J]. Sens Actuator B: Chem,2018, 275: 101-109. |
16 | ZHANG P, XUE K, DAI Y, et al. A novel AIE fluorescence probe featuring with high quantum yield for high-fidelity lysosomal targeting and tracking[J]. Spectroc Acta Pt A-Molec Biomolec Spectr,2023, 296: 122657-122664. |
17 | YANG C, CAI W, ZHANG X, et al. Multifunctional conjugated oligomers containing novel triarylamine and fluorene units with electrochromic, electrofluorochromic, photoelectron conversion, explosive detection and memory properties[J]. Dyes Pigm,2019, 160: 99-108. |
18 | SUN J, LIANG Z. Swift electrofluorochromism of donor-acceptor conjugated polytriphenylamines[J]. ACS Appl Mater Interfaces,2016, 8(28): 18301-18308. |
19 | SANTRA D C, NAD S, MALIK S. Electrochemical polymerization of triphenylamine end-capped dendron: electrochromic and electrofluorochromic switching behaviors[J]. J Electroanal Chem,2018, 823: 203-212. |
20 | SU C, YANG F, XU L, et al. Radical polymer containing a polytriphenylamine backbone: its synthesis and electrochemical performance as the cathode of lithium-ion batteries[J]. ChemPlusChem,2015, 80(3): 606-611. |
21 | HSIAO S H, CHIU Y T. Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units[J]. RSC Adv,2015, 5(110): 90941-90951. |
22 | HSIAO S H, LU H Y. Electrosynthesis of aromatic poly(amide-amine) films from triphenylamine-based electroactive compounds for electrochromic applications[J]. Polymers, 2017,9(12): 708-723. |
23 | SEO E T, NELSON R F, FRITSCH J M, et al. Anodic oxidation pathways of aromatic amines. electrochemical and electron paramagnetic resonance studies[J]. J Am Chem Soc,1966, 88(15): 3498-3503. |
24 | ZOU L, GUO S, LV H, et al. Molecular design for organic luminogens with efficient emission in solution and solid-state[J]. Dyes Pigm,2022, 198: 109958-109966. |
25 | OMER K M, KU S Y, CHENG J Z, et al. Electrochemistry and electrogenerated chemiluminescence of a spirobifluorene-based donor (triphenylamine)-acceptor (2,1,3-benzothiadiazole) molecule and its organic nanoparticles[J]. J Am Chem Soc,2011, 133(14): 5492-5499. |
26 | MELHUISH W H. Calibration of spectrofluorimeters for measuring corrected emission spectra[J]. J Opt Soc Am,1962, 52(11): 1256-1258. |
27 | MELHUISH W H. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute1[J]. J Phys Chem,1961, 65(2): 229-235. |
28 | MELHUISH W H. Measurement of quantum efficiencies of fluorescence and phosphorescence and somes uggested luminescence standards[J]. J Opt Soc Am,1964, 54(2): 183-186. |
29 | LI Z, QIN W, WU J, et al. Bright electrochemiluminescent films of efficient aggregation-induced emission luminogens for sensitive detection of dopamine[J]. Mater Chem Front, 2019, 3: 2051-2057. |
30 | LAZIC V, JURKOVIC M, JEDNACAK T, et al. Intra- and intermolecular hydrogen bonding in acetylacetone and benzoylacetone derived enaminone derivatives [J]. J Mol Struct,2015, 1079: 243-249. |
31 | LIU Y, ZHANG Y, WU X, et al. Deep-blue luminescent compound that emits efficiently both in solution and solid state with considerable blue-shift upon aggregation[J]. J Mater Chem C,2014, 2(6): 1068-1075. |
32 | YU W L, PEI J, HUANG W, et al. A novel triarylamine-based conjugated polymer and its unusual light-emitting properties[J]. Chem Commun,2000, 8: 681-682. |
33 | JEN A K Y, LIU Y, HU Q, et al. Efficient light-emitting diodes based on a binaphthalene-containing polymer[J]. Appl Phys Lett,1999, 75(24): 3745-3747. |
34 | SARMA M, WONG K T. Exciplex: an intermolecular charge-transfer approach for TADF[J]. ACS Appl Mater Interfaces,2018, 10(23): 19279-19304. |
35 | BARAH D, RAY D. Broadband white electroluminescence from a dopant-free OLED comprising pure electromer and electroplex emission[J]. J Phys D-Appl Phys,2024, 57(13): 135312-135324. |
36 | JENEKHE S A, OSAHENI J A. Excimers and exciplexes of conjugated polymers[J]. Science,1994, 265: 765-768. |
37 | KALINOWSKI J. Excimers and exciplexes in organic electroluminescence[J]. Mater Sci,2009, 27(3): 0137-1339. |
38 | STERN O. Uder die abklingzeit der fluoreszenz[J]. Phys Z,1919, 20: 183-188. |
[1] | 熊海涛, 吴睿, 吴迎春. Nafion-碳纳米管修饰电极电化学发光分析法测定卡马西平[J]. 应用化学, 2021, 38(6): 731-738. |
[2] | 曾波,杨雁冰,梁玲,袁荃. 膀胱癌液体活检的研究进展[J]. 应用化学, 2019, 36(4): 367-378. |
[3] | 张家一,罗莉君,刘晓红,李丽波,成亮,曹大威,由天艳. 电化学发光传感器在农业传感领域中的研究进展[J]. 应用化学, 2019, 36(4): 379-391. |
[4] | 覃晓丽,王茗涵,董逸帆,邵元华. 电化学发光生物传感技术在快速检测心肌梗死标志物中的研究进展[J]. 应用化学, 2018, 35(9): 1107-1112. |
[5] | 李素文, 张学伟, 姜义, 岳巾英, 贯丛. 水杨酸盐敏化BaF2∶Tb3+纳米粒子中的Tb3+离子发光[J]. 应用化学, 2018, 35(7): 812-817. |
[6] | 刘国成, 陈乃丽, 王秀丽, 熊莹. 一个二维钴配位聚合物的合成、结构及光催化性质[J]. 应用化学, 2015, 32(3): 335-341. |
[7] | 黄飞隆, 石睿恺, 朱涛峰, 李准, 王邃, 臧漫路, 梁洪泽. 膦酰基离子液体铕配合物的合成、结构与荧光性质[J]. 应用化学, 2014, 31(12): 1434-1440. |
[8] | 林美娟, 安琪, 胡珍, 曾惠卷, 凌启淡. 脂肪酸铕配合物掺杂聚乙烯、聚丙烯和聚苯乙烯光致发光复合材料[J]. 应用化学, 2014, 31(10): 1164-1170. |
[9] | 吕剑虹, 马志华, 丁军桥, 王利祥. 基于氟代苯并咪唑配体的绿光铱配合物的合成与表征[J]. 应用化学, 2014, 31(10): 1177-1184. |
[10] | 王凯凯, 张齐贤, 李亚丰, 牛利. 含偶氮苯基元对称双噁二唑衍生物的合成及其发光性能[J]. 应用化学, 2013, 30(01): 48-53. |
[11] | 吕仁江, 侯学功, 李英杰, 邓磊, 丁会敏, 丁爽. 阳极氧化铝模板合成介孔CeO2纳米纤维及其光致发光性能[J]. 应用化学, 2012, 29(06): 658-662. |
[12] | 白青龙, 张春花, 程传辉, 李万程, 杜国同. α(β)-四苯氧基酞菁锌的合成、表征和电致发光性能[J]. 应用化学, 2012, 29(06): 643-648. |
[13] | 林美娟, 王文, 章文贡. 3,5-二硝基水杨酸铕/聚合物的合成及光致发光性能[J]. 应用化学, 2011, 28(08): 879-886. |
[14] | 王鹏飞, 张贤文, 朱永春, 钱逸泰. Tb3+掺杂CePO4核壳微球的水热合成及其发光性能[J]. 应用化学, 2011, 28(08): 913-917. |
[15] | 林美娟, 胡珍. 脂肪酸铕配合物聚合物材料的合成及发光性质[J]. 应用化学, 2009, 26(6): 646-650. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||