应用化学 ›› 2024, Vol. 41 ›› Issue (11): 1535-1551.DOI: 10.19894/j.issn.1000-0518.240183
• 综合评述 •
收稿日期:
2024-06-12
接受日期:
2024-10-13
出版日期:
2024-11-01
发布日期:
2024-12-04
通讯作者:
伊绘霖
基金资助:
Received:
2024-06-12
Accepted:
2024-10-13
Published:
2024-11-01
Online:
2024-12-04
Contact:
Hui-Lin YI
About author:
yihl.qday@sinopec.comSupported by:
摘要:
有机过氧化物是一种常见的化工助剂,广泛被用作聚合引发剂、聚酯固化剂等。 传统间歇釜式过氧化工艺存在相间传递速率较低、工艺参数不易控和持液量大的问题,反应效率低且存在失控风险。 微化工系统比表面积大、传质传热速率快以及可控性高,在过氧化工艺中表现出一定优势。 本文从合成有机过氧酸、过氧酸酯、烷基过氧化氢和过氧化酮面临的共性与个性问题出发,综述了近10年内有机过氧化物在微反应器内合成的研究进展,介绍了微尺度下过氧化反应常用合成体系、工艺条件和反应器类型,分析了微反应器在提高过氧化工艺可控性、安全性和反应效率方面的重要作用及存在问题,最后提出解决思路并对发展趋势进行展望。
中图分类号:
伊绘霖. 微反应器内有机过氧化物合成研究进展[J]. 应用化学, 2024, 41(11): 1535-1551.
Hui-Lin YI. Research Progress on the Synthesis of Organic Peroxide in Microreactor[J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1535-1551.
图1 带有内交叉指型微混合器的微反应器结构示意图[21]: (A)实验室规模反应器; (B)工业生产反应器概念模型
Fig.1 The structure of slit interdigital micromixer[21]: (A) Microreactor in laboratory scale; (B) Conceptual model of microreactor in industrial scale
图2 毛细管微反应器内PFA和PAA合成[22]: (A)微反应系统示意图; (B)模型预测与实验实测数据对比; (C)不同模型预测PAA反应动力学参数结果比较(蓝色为平推流模型,其他为不同参数的层流模型)
Fig.2 The production of PFA and PAA in capillary microreactor[22]: (A) Schematic diagram of microreaction system; (B) Comparison between data obtained by model and experiment; (C) Comparison of different models in predicting kinetic parameters (blue dots-advection flow model, others-laminar flow models with different parameters)
图3 不同结构反应器内PFA与PAA合成:(A)康宁先进流反应器(A1.微反应系统实物图; A2.微反应器结构)[23]; (B)螺旋毛细管微反应器[24]; (C)强化分散的微反应器(C1.微反应系统示意图; C2.微反应器示意图)[25]
Fig.3 The production of PFA and PAA in microreactor with different structures: (A) AFR (A1.image of microreaction system; A2.the structure of microreactor)[23]; (B) Spiral capillary microreactor[24]; (C) Microreactor for dispersion enhancement (C1 and C2 represent the schematic diagram of microreaction system and microreactor, respectively)[25]
图6 固定床微反应器内非均相合成有机过氧酸[32-34]: (A) Dowex 50Wx8催化下PFA制备(A1.催化剂形貌表征; A2.微反应系统示意图; A3.Dowex 50Wx8与硫酸催化效果比较); (B)非均相催化剂红外光谱测试结果(B1.Amberlite IR 120 Na; B2.Amberlyst 15)
Fig.6 Production of organic peroxide acid in a fixed bed microreactor using heterogeneous catalyst[32-34]: (A) Preparation of PFA catalyzed by Dowex 50Wx8 (A1.morphology of catalyst; A2.schematic diagram of microreaction system; A3.comparison of catalyst effect between Dowex 50Wx8 and sulfuric acid); (B) Infrared spectroscopy characterization of heterogeneous catalyst (B1.Amberlite IR 120 Na; B2.Amberlyst 15)
Target product | Microreactor type | Reaction condition | Product | Ref. | |||
---|---|---|---|---|---|---|---|
Catalyst | Temperature/K | Residence time/min | Conversion/% | Concentration | |||
PFA | Slit interdigital micromixer | Sulfuric acid with mass fraction of 96% (mass fraction of 6% for the total reaction system) | 313 | 4 | / | 13% (mass fraction) | [ |
Advanced-flow reactor | Sulfuric acid with mass fraction of 98% (mass fraction of 1% for the total reaction system) | 303 | 1 | 95.85 | 6.25 mol/L | [ | |
Capillary | Sulfuric acid with mass fraction of 98% (mole fraction accounts for 4% of FA dosage) | 303 | 6 | 72.78 | 5.175 mol/L | [ | |
Fixed bed with ultrasonic | Amberlite IR-120H | 313 | 10 | 79.59 | 3.55 mol/L | [ | |
PAA | Slit interdigital micromixer | Sulfuric acid with mass fraction of 96% (mass fraction of 6% for the total reaction system) | 343 | 10 | / | 23% (mass fraction) | [ |
Serpentine | Sulfuric acid with mass fraction of 98% (mole fraction of 6% for the total reaction system) | 333 | 9 | 40 | / | [ | |
capillary | 9 | 58 | 3.751 mol/L | ||||
AFR | 9 | 56 | / | ||||
Capillary | Sulfuric acid with mass fraction of 98% (1.2 mol/L) | 343 | 3.3 | 50 | 30% (mass fraction) | [ | |
Fixed bed | Dowex 50 Wx8 | 423 | 10 | 79.59 | 3.55 mol/L | [ | |
Fixed bed with ultrasonic | Amberlite IR-120H | 413 | 10 | 92 | 5.125 mol/L | [ | |
PBA | Capillary | Sulfuric acid with mass fraction of 97% (mole fraction of 10% for the total reaction system) | 423 | 10 | 72.36 | 4.0375 mol/L | [ |
Fixed bed | Amberlyst15 | 463 | 8 | 56.2 | 2.9 mol/L | [ |
表1 微反应器内过氧酸合成效果比较
Table 1 Summary and comparison of organic peroxide acid synthesis
Target product | Microreactor type | Reaction condition | Product | Ref. | |||
---|---|---|---|---|---|---|---|
Catalyst | Temperature/K | Residence time/min | Conversion/% | Concentration | |||
PFA | Slit interdigital micromixer | Sulfuric acid with mass fraction of 96% (mass fraction of 6% for the total reaction system) | 313 | 4 | / | 13% (mass fraction) | [ |
Advanced-flow reactor | Sulfuric acid with mass fraction of 98% (mass fraction of 1% for the total reaction system) | 303 | 1 | 95.85 | 6.25 mol/L | [ | |
Capillary | Sulfuric acid with mass fraction of 98% (mole fraction accounts for 4% of FA dosage) | 303 | 6 | 72.78 | 5.175 mol/L | [ | |
Fixed bed with ultrasonic | Amberlite IR-120H | 313 | 10 | 79.59 | 3.55 mol/L | [ | |
PAA | Slit interdigital micromixer | Sulfuric acid with mass fraction of 96% (mass fraction of 6% for the total reaction system) | 343 | 10 | / | 23% (mass fraction) | [ |
Serpentine | Sulfuric acid with mass fraction of 98% (mole fraction of 6% for the total reaction system) | 333 | 9 | 40 | / | [ | |
capillary | 9 | 58 | 3.751 mol/L | ||||
AFR | 9 | 56 | / | ||||
Capillary | Sulfuric acid with mass fraction of 98% (1.2 mol/L) | 343 | 3.3 | 50 | 30% (mass fraction) | [ | |
Fixed bed | Dowex 50 Wx8 | 423 | 10 | 79.59 | 3.55 mol/L | [ | |
Fixed bed with ultrasonic | Amberlite IR-120H | 413 | 10 | 92 | 5.125 mol/L | [ | |
PBA | Capillary | Sulfuric acid with mass fraction of 97% (mole fraction of 10% for the total reaction system) | 423 | 10 | 72.36 | 4.0375 mol/L | [ |
Fixed bed | Amberlyst15 | 463 | 8 | 56.2 | 2.9 mol/L | [ |
图7 异丁烷气-液氧化制备TBHP: (A) TBHP、DTBP引发效果比较[41]; (B)微反应器系统实物图[42]
Fig.7 Production of TBHP by gas-liquid oxidation of isobutane: (A) Comparison of TBHP and DTBP as initiator[41]; (B) Image of microreaction system[42]
图8 不同微反应器内异丙苯的非催化氧化[44]: (A)微反应系统示意图: (B)膜分散微反应器; (C)螺旋弯折毛细管微反应器; (D)间歇釜式反应装置
Fig.8 Non-catalyzed oxidation of isopropylbenzene in different microreactors[44]: (A) Schematic diagram of microreaction system; (B) Membrane dispersed microreactor; (C) Spiral capillary microreactor; (D) Stirred tank reactor
图10 TBPP合成工艺与反应器的开发: (a) KTBP和PivCl反应过程研究(a1.实验装置图; a2.两相分散过程)[51]; (b)微孔反应器开发步骤示意图[52]
Fig.10 Process and microreactor development of TBPP synthesis: (a) Study on the reaction process of KTBP and PivCl (a1. The schematic diagram of experimental device; a2. Dispersion process of two phases)[51]; (b) Schematic diagram of development steps for microreactor[52]
图11 微反应器内TBPEH合成[55]: (A)微反应系统示意图; (B)两相柱塞流分散过程; (C)反应机理推测
Fig.11 Production of TBPEH in microreactor[55]: (A) The schematic diagram of microreaction system; (B) The dispersion process of squeezing flow; (C) The speculation of reaction mechanism
图14 螺旋毛细管微反应器内MEKPO合成: (A)实验室小试装置[59]; (B)千吨级/年中试装置[60]
Fig.14 Production of MEKPO in capillary microreactor: (A) Microreaction system in laboratory scale[59]; (B) Pilot plant with scale of thousand ton/year[60]
Microreactor type | Target product | Commercialized or not | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Slit interdigital micromixer | PFA,PAA | Yes | High mixing efficiency | High cost | [ |
AFR | PFA,PAA,TBHP | Yes | High mixing efficiency | High cost | [ |
Capillary | PFA,PAA,PBA,TBHP,CHP,TBPP,TBPEH,MEKPO | No | Low cost, easy to operate | Restricted size limit to ensure the mixing effect, large pressure drop | [ |
Fixed bed | PFA | No | Low cost, easy to operate | Low activity of heterogenous catalysts | [ |
Membrane dispersion | CHP | No | Large interfacial area | Large pressure drop, the core membrane components are prone to wear and tear | [ |
Orifice | TBPP,TBPEH | No | Suitable for heterogeneous reaction | Large pressure drop | [ |
Split & converge | TBPP,TBPEH | No | Suitable for heterogeneous reaction | Complex structure, high requirements for machining accuracy | [ |
表2 微反应器内有机过氧化物合成进展
Table 2 Summary and comparison of organic peroxides synthesis in different microreactors
Microreactor type | Target product | Commercialized or not | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Slit interdigital micromixer | PFA,PAA | Yes | High mixing efficiency | High cost | [ |
AFR | PFA,PAA,TBHP | Yes | High mixing efficiency | High cost | [ |
Capillary | PFA,PAA,PBA,TBHP,CHP,TBPP,TBPEH,MEKPO | No | Low cost, easy to operate | Restricted size limit to ensure the mixing effect, large pressure drop | [ |
Fixed bed | PFA | No | Low cost, easy to operate | Low activity of heterogenous catalysts | [ |
Membrane dispersion | CHP | No | Large interfacial area | Large pressure drop, the core membrane components are prone to wear and tear | [ |
Orifice | TBPP,TBPEH | No | Suitable for heterogeneous reaction | Large pressure drop | [ |
Split & converge | TBPP,TBPEH | No | Suitable for heterogeneous reaction | Complex structure, high requirements for machining accuracy | [ |
1 | 翁干友, 史建公. 有机过氧化物的性质、分类及用途[J]. 石化技术, 2001, 8(1): 63-66. |
WENG G Y, SHI J G. The properties, classification and applications of organic peroxide[J]. Petrochem Ind Technol, 2001, 8(1): 63-66. | |
2 | 奎彩艳. 有机过氧化物的生产工艺研究进展[J]. 新型工业化, 2019, 9(10): 73-76. |
KUI C Y. Progress in the production technology of organic peroxides[J]. J New Ind, 2019, 9(10): 73-76. | |
3 | 唐小华, 惠菲, 查飞, 等. 有机过氧化物的稳定性研究进展[J]. 应用化工, 2019, 48(10): 2444-2449. |
TANG X H, HUI F, ZHA F, et al. Research progress on the stability of organic peroxides[J]. Appl Chem Ind, 2019, 48(10): 2444-2449. | |
4 | ZHANG L T, FAN Z Q, DENG Q T, et al. Gel formed during the solid-state graft copolymerization of styrene and spherical polypropylene granules. Ⅰ. influence of reaction conditions on the gelation and its mechanism[J]. J Appl Polym Sci, 2007, 104(6): 3682-3687. |
5 | KRUZELAK J, HLOZEKOVA K, KVASNICAKOVA A, et al. Application of sulfur and peroxide curing systems for cross-linking of rubber composites filled with calcium lignosulfonate[J]. Polymers, 2022, 14(9): 1-20. |
6 | KRUZELAK J, KVASNICAKOVA A, HLOZEKOVA K, et al. The effect of temperature and peroxides content on cross-linking and properties of EPDM-based rubber matrix[J]. J Elastom Plast, 2022, 54(5): 693-717. |
7 | LUFT G, BITSCH H, SEIDL H. Effectiveness of organic peroxide initiators in the high-pressure polymerization of ethylene[J]. J Macromol Sci, 2006, 11(6): 1089-1112. |
8 | 陈光文. 微化工技术研究进展[J]. 现代化工, 2007, 27(10): 8-13. |
CHEN G W. Advance and prospect of microchemical engineering and technology[J]. Mod Chem Ind, 2007, 27(10): 8-13. | |
9 | 骆广生, 王凯, 徐建鸿, 等. 微化工系统内多相流动及其传递反应性能研究进展[J]. 化工学报, 2010, 61(7): 1621-1626. |
LUO G S, WANG K, XU J H, et al. Multiphase flow, transport and reaction in micro-structured chemical systems[J]. Chin J Chem Eng, 2010, 61(7): 1621-1626. | |
10 | 辛靖, 朱元宝, 胡淼, 等. 微化工技术的研究与应用进展[J]. 石油化工高等学校学报, 2020, 33(5): 9-13. |
XIN J, ZHU Y B, HU M, et al. Research and application progress of microchemical technology[J]. J Petrochem Univ, 2020, 33(5): 9-13. | |
11 | MASON B P, PRICE K E, STEINBACHER J L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chem Rev, 2007, 107(6): 2300-2318. |
12 | BURNS J R, RAMSHAW C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab Chip, 2001, 1: 10-15. |
13 | YI H L, WAN Y C, WANG Y J, et al. Controllable preparation of highly uniform γ-alumina microspheres via the sol-gel route for alkoxide in a coaxial microchannel[J]. J Sol-gel Sci Technol, 2020(93): 391-401. |
14 | YI H L, WANG Y J, LUO G S. Unveiling the mechanism of methylcellulose-templated synthesis of Al2O3 microspheres with organic solvents as swelling agents in microchannel[J]. J Colloid Interface Sci, 2022(628): 31-42. |
15 | KOCKMANN N, THENEE P, FLEISCHER-TREBES C, et al. Safety assessment in development and operation of modular continuous-flow processes[J]. React Chem Eng, 2017, 2(3): 258-280. |
16 | SUN B, ZHU H, JIANG J, et al. Application of micromixer and microreactor in improving process safety[J]. Chem Ind Eng Prog, 2017, 36(8): 2756-2763. |
17 | ZHANG J, WANG K, TEIXEIRA A R, et al. Design and scaling up of microchemical systems: a review[J]. Annu Rev Chem Biomol Eng, 2017(8): 285-305. |
18 | KOBAYASHI I, NEVES M A, WADA Y, et al. Large microchannel emulsification device for mass producing uniformly sized droplets on a liter per hour scale[J]. Green Process Synth, 2012, 1(4): 353-362. |
19 | YI H L, LU S L, WANG Y J, et al. Parallelized microfluidic droplet generators with improved ladder-tree distributors for production of monodisperse Al2O3 microspheres[J]. Particuology, 2022(62): 47-54. |
20 | 曹涤尘. 有机过氧酸的合成和利用[J]. 江苏化工市场七日讯, 1983, 1: 28-32. |
CAO D C. The synthesis and use of organic peroxide acid[J]. Jiangsu Chem Ind, 1983, 1: 28-32. | |
21 | EBRAHIMI F, KOLEHMAINEN E, OINAS P, et al. Production of unstable percarboxylic acids in a microstructured reactor[J]. Chem Eng J, 2011, 167(2/3): 713-717. |
22 | EBRAHIMI F, KOLEHMAINEN E, LAARI A, et al. Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling[J]. Chem Eng Sci, 2012, 71: 531-538. |
23 | GAIKWAD S M, JOLHE P D, BHANVASE B A, et al. Process intensification for continuous synthesis of performic acid using corning advanced-flow reactors[J]. Green Process Synth, 2017, 6(2): 189-196. |
24 | MARALLA Y, SONAWANE S. Process intensification using a spiral capillary microreactor for continuous flow synthesis of performic acid and it's kinetic study[J]. Chem Eng Process, 2018, 125: 67-73. |
25 | 鄢冬茂, 殷国强, 龚党生, 等. 一种微反应器中连续流过氧乙酸合成装置: 中国, 217511832U[P]. 2022-09-30. |
YAN D M, YIN G Q, GONG D S, et al. A microfluidic device for the continuous synthesis of peracetic acid: CN, 217511832U[P]. 2022-09-30. | |
26 | MARALLA Y, SONAWANE S. Comparative study for production of unstable peracetic acid using microstructured reactors and its kinetic study[J]. J Flow Chem, 2019, 9(2): 145-154. |
27 | MARALLA Y, SONAWANE S. Process intensification by using a helical capillary microreactor for a continuous flow synthesis of peroxypropionic acid and its kinetic study[J]. Period Polytech-Chem Eng, 2020, 64(1): 9-19. |
28 | LIU S, ZHANG X, ASSELIN E, et al. A new process for peracetic acid production from acetic acid and hydrogen peroxide based on kinetic modeling and distillation simulation[J]. Ind Eng Chem Res, 2022, 61(1): 339-348. |
29 | PRIESCHL M, OTVOS S B, KAPPE C O. Sustainable aldehyde oxidations in continuous flow using in-situ-generated performic acid[J]. ACS Sustainable Chem Eng, 2021, 9(16): 5519-5525. |
30 | DIDILLON B, MANSOUR A E, CANDY J P, et al. heterogeneous catalysis and fine chemicals Ⅱ[J]. Stud Surf Sci Catal, 1991, 59: 137-143. |
31 | 张毅城, 查飞, 唐小华, 等. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 669-788. |
ZHANG Y C, ZHA F, TANG X H, et al. Research progress of heterogeneous catalytic preparation of organic peroxides[J]. Chin J Appl Chem, 2023, 40(6): 669-788. | |
32 | EBRAHIMI F, KOLEHMAINEN E, TURUNEN I. Heterogeneously catalyzed synthesis of performic acid in a microstructured reactor[J]. Chem Eng J, 2012, 179: 312-317. |
33 | KATURI P, MARALLA Y, SHARADA S, et al. Production of performic acid through a capillary microreactor by heterogeneous catalyst[J]. Int J Chem React Eng, 2023, 21(1): 1-9. |
34 | KATURI P, MARALLA Y, SHARADA S, et al. Synthesis of perbutyric acid with amberlyst catalyst in a continuous microreactor[J]. Mater Today, 2023: 126-133. |
35 | BADDAY A S, ABDULLAH A Z, LEE K T, et al. Intensification of biodiesel production via ultrasonic-assisted process: a critical review on fundamentals and recent development[J]. Renew Sust Energ Rev, 2012, 16(7): 4574-4587. |
36 | ALJBOUR S, TAGAWA T, YAMADA H. Ultrasound-assisted capillary microreactor for aqueous-organic systems—hydrodynamics study[J]. J Chem Eng Jpn, 2009, 42(6): 400-406. |
37 | ALJBOUR S, TAGAWA T, YAMADA H. Mass transfer performance of ultrasound-assisted phase transfer catalysis in a capillary microreactor[J]. J Chem Eng Jpn, 2010, 43(5): 429-434. |
38 | JOLHE P D, BHANVASE B A, PATIL V S, et al. Ultrasound assisted synthesis of performic acid in a continuous flow microstructured reactor[J]. Ultrason Sonochem, 2017, 39: 153-159. |
39 | JOLHE P D, BHANVASE B A, PATIL V S, et al. Sonochemical synthesis of peracetic acid in a continuous flow micro-structured reactor[J]. Chem Eng J, 2015, 276: 91-96. |
40 | 赵小平, 樊真. 过氧化物交联剂和烯丙基系列助交联剂[J]. 精细与专用化学品, 2003, 11(17): 13-15. |
ZHAO X P, FAN Z. Peroxide crosslinking agent and allyl based cocrosslinking agent[J]. Fine Spec Chem, 2003, 11(17): 13-15. | |
41 | WILLMS T, KRYK H, HAMPEL U. Partial isobutane oxidation to tert-butyl hydroperoxide in a micro reactor-comparison of DTBP and aqueous TBHP as initiator[J]. Chem Ing Technol, 2018, 90(5): 731-735. |
42 | WILLMS T, KRYK H, HAMPEL U. Microreactor studies for efficient organic oxidation processes[J]. Catal Today, 2020, 346: 3-9. |
43 | LEI Z, HAN X, WANG Y, et al. Effect of reaction condition on the oxidation of cumene catalyzed by polymer-bound cobalt complexes[J]. Poly Adv Technol, 2001, 12(11): 637-641. |
44 | LU Y, SHENG X, ZHANG J, et al. Cumene autooxidation to cumene hydroperoxide based on a gas-liquid microdispersion strategy[J]. Chem Eng Process, 2022, 174: 108861. |
45 | 韩海波, 魏小波. 一种异丙苯氧化制备过氧化氢异丙苯的方法及装置: 中国, 106588734B[P]. 2019-03-12. |
HAN H B, WEI X B. A method and device for preparing cumene hydroperoxide by oxidation of isopropylbenzene: CN, 106588734B[P]. 2019-03-12. | |
46 | ZHU H, YAN J, ZHANG Z, et al. Kinetics study of the peroxidation of tert-butyl alcohol to tert-butyl hydrogen peroxide in a microreactor[J]. Org Process Res Dev, 2023, 28(5): 1486-1493. |
47 | 陈唐建, 翟志强, 薛育宴. 叔戊基过氧化氢的连续流合成工艺: 中国, 112409233B[P]. 2023-01-31. |
CHEN T J, ZHAI Z Q, XUE Y Y. Continuous flow synthesis process of tert-amyl hydrogen peroxide: CN, 112409233B[P]. 2023-01-31. | |
48 | ZHANG L, WANG L, ZHI K, et al. Study of the synthesis of tert-butyl peroxyneodecanoate[J]. Appl Chem Ind, 2018, 47(6): 1179-1181,1185. |
49 | PHILIPP, BECKER, MICHAEL, et al. Initiator efficiency of peroxides in high-pressure ethene polymerization[J]. Macromol Chem Phys, 2002, 203(14): 2113-2123. |
50 | BUBACK M, FISCHER B, HINRICHS S, et al. Initiator efficiency of tert-alkyl peroxyesters in high-pressure ethene polymerization[J]. Macromol Chem Phys, 2010, 208(7): 772-783. |
51 | ILLG T, HESSEL V, LOEB P, et al. Novel process window for the safe and continuous synthesis of tert.-butyl peroxy pivalate in a micro-reactor[J]. Chem Eng J, 2011, 167(2/3): 504-509. |
52 | ILLG T, HESSEL V, LOEB P, et al. Orifice microreactor for the production of an organic peroxide-non-reactive and reactive characterization[J]. Green Chem, 2012, 14(5): 1420-1433. |
53 | ILLG T, HESSEL V, LOEB P, et al. Continuous synthesis of tert-butyl peroxypivalate using a single-channel microreactor equipped with orifices as emulsification units[J]. Chemsuschem, 2011, 4(3): 392-398. |
54 | ILLG T, KNORR A, FRITZSCHE L. Microreactors-a powerful tool to synthesize peroxycarboxylic esters[J]. Molecules, 2016, 21(5): 1-16. |
55 | MAGOSSO M, VAN DEN BERG M, VAN DER SCHAAF J. Kinetic study and modeling of the Schotten-Baumann synthesis of peroxyesters using phase-transfer catalysts in a capillary microreactor[J]. React Chem Eng, 2021, 6(9): 1574-1590. |
56 | PACHPINYO P, LERTPRASERTPONG P, CHUAYJULJIT S, et al. Preliminary study on preparation of unsaturated polyester resin/natural rubber latex blends in the presence of dispersion aids[J]. J Appl Polym Sci, 2010, 101(6): 4238-4241. |
57 | ZHANG J, WU W, QIAN G, et al. Continuous synthesis of methyl ethyl ketone peroxide in a microreaction system with concentrated hydrogen peroxide[J]. J Hazard Mater, 2010, 181(1/3): 1024-1030. |
58 | WU W, QIAN G, ZHOU X G, et al. Peroxidization of methyl ethyl ketone in a microchannel reactor[J]. Chem Eng Sci, 2007, 62(18/20): 5127-5132. |
59 | YANG T, FANG H, TIAN Z, et al. Efficient continuous-flow synthesis of methyl ethyl ketone peroxide in a microreaction system[J]. Ind Eng Chem Res, 2022, 61(31): 11368-11381. |
60 | YANG T, TIAN Z, FANG H, et al. Apparent kinetics and thermodynamics study of methyl ethyl ketone peroxide in efficient continuous-flow microreaction system and its kiloton pilot plant[J]. Chem Eng Sci, 2024, 285: 119472-119488. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 何伟, 方正, 陈克涛, 万志东, 郭凯. 微反应器在合成化学中的应用[J]. 应用化学, 2013, 30(12): 1375-1385. |
[3] | 石文兵. 流动注射纳米微反应器化学发光法测定盐酸二氧丙嗪[J]. 应用化学, 2008, 25(4): 441-444. |
[4] | 孙占辉, 王瑜, 孙金华. 有机过氧化物的热自燃性小药量评价法[J]. 应用化学, 2005, 22(1): 1-4. |
[5] | 刘雄民, 长谷川和俊, 田村昌三. 稀释稳定剂对有机过氧化物热分解的压力效应[J]. 应用化学, 2004, 21(6): 589-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||