应用化学 ›› 2024, Vol. 41 ›› Issue (11): 1605-1619.DOI: 10.19894/j.issn.1000-0518.240141

• 研究论文 • 上一篇    下一篇

水力空化场强化甲基异噻唑啉酮的氧化降解

牛文奇1, 马凤云1(), 夏斌1, 刘景梅2, 殷双杰3   

  1. 1.新疆大学化工学院,煤炭清洁转化与化工过程新疆维吾尔自治区重点实验室,乌鲁木齐 830046
    2.新疆大学化学学院,省部共建碳基能源资源化学与利用国家重点实验室,乌鲁木齐 830017
    3.新疆大化富山化工有限公司,石河子 831300
  • 收稿日期:2024-04-28 接受日期:2024-08-07 出版日期:2024-11-01 发布日期:2024-12-04
  • 通讯作者: 马凤云

Oxidative Degradation of Methylisothiazolinone Enhanced by Hydrodynamic Cavitation Field

Wen-Qi NIU1, Feng-Yun MA1(), Bin XIA1, Jing-Mei LIU2, Shuang-Jie YIN3   

  1. 1.Key Laboratory of Coal Clean Conversion & Chemical Engineering Processes,Xinjiang Uyghur Autonomous Region,College of Chemical Engineering,Xinjiang University,Urumqi 830046,China
    2.State key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,College of Chemistry,Xinjiang University,Urumqi 830017,China
    3.Xinjiang Dahua Fushan Chemical Co. ,Ltd. ,Shihezi 831300,China
  • Received:2024-04-28 Accepted:2024-08-07 Published:2024-11-01 Online:2024-12-04
  • Contact: Feng-Yun MA
  • About author:nwq515298@163.com
  • Supported by:
    the Gentral Government's Guidans on Loed Science and Technolgy Derclopment Special Project and the Major Special Project of the Xinjiang Uygur Autonomous Region(2021A01002)

摘要:

甲基异噻唑啉酮(2-Methyl-4-isothiazolin-3-one,MIT)在工业生产中广泛使用,但其在水环境中的持久性和潜在的生物毒性引起了广泛关注。 为此,基于文丘里管空化反应器,通过水力空化技术联合H2O2,针对氧化降解MIT的过程进行了研究。 以提高MIT的降解率为目的,对反应时间、入口压力、H2O2加入量及MIT初始浓度等条件进行了优化,通过一系列实验,确定最佳的反应条件如下: 即在反应时间40 min、入口压力0.5 MPa、H2O2加入量5 mL/L、MIT初始质量浓度15 mg/L的条件下,MIT的降解率达69%。 为了深入了解MIT的降解机制,采用傅里叶变换离子回旋共振质谱(FT-ICR-MS)技术分析MIT降解的中间产物,并推测了MIT在该工艺条件下的降解历程,MIT主要通过氧化反应及加成反应使其五元环结构被破坏而降解,这表明在当前的实验条件下,MIT的降解速率已经达到了一个稳定水平,进一步提高降解效率可能需要调整其他参数。 在此基础上,采用初始速率法,确定出该工艺条件下MIT的降解反应为零级反应,即反应速率与MIT的浓度无关,而是受到其他因素的影响,并利用Coast-Redfern模型,估算出MIT的表观反应活化能为31.127 kJ/mol,为进一步优化降解工艺提供了重要依据。

关键词: 水力空化, 文丘里管, 降解, 甲基异噻唑啉酮

Abstract:

Methyl-4-isothiazolin-3-one (MIT) is widely used in industrial production, but its persistence and potential biological toxicity in water environment have attracted widespread attention. Therefore, based on a Venturi tube cavitation reactor, a study was conducted on the process of oxidative degradation of methyl isothiazolinone using hydraulic cavitation technology combined with H2O2. With the aim of improving the degradation rate of MIT, the reaction time, inlet pressure, H2O2 addition amount, and MIT initial concentration were optimized. Through a series of experiments, the optimal reaction conditions were determined as follows: under the conditions of reaction time of 40 min, inlet pressure of 0.5 MPa, H2O2 addition amount of 5 mL/L, and MIT initial concentration of 15mg/L, the degradation rate of MIT reached 69%. In order to gain a deeper understanding of the degradation mechanism of MIT, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) technology was used to analyze the intermediate products of MIT degradation, and to speculate on the degradation process of MIT under this process condition. MIT mainly degrades its five membered ring structure through oxidation and addition reactions. This indicates that under the current experimental conditions, the degradation rate of MIT has reached a stable level, and further improving the degradation efficiency may require adjusting other parameters. On this basis, the initial rate method was used to determine that the degradation reaction of MIT under this process condition is a zero order reaction, that is, the reaction rate is not related to the concentration of MIT, but is influenced by other factors. Using the Coast Redfern model, the apparent activation energy of MIT was estimated to be 31.127 kJ/mol, providing an important basis for further optimizing the degradation process.

Key words: Hydrodynamic cavitation, Venture tube, Degradation, Methylisothiazolinone

中图分类号: