应用化学 ›› 2024, Vol. 41 ›› Issue (11): 1605-1619.DOI: 10.19894/j.issn.1000-0518.240141
收稿日期:
2024-04-28
接受日期:
2024-08-07
出版日期:
2024-11-01
发布日期:
2024-12-04
通讯作者:
马凤云
Wen-Qi NIU1, Feng-Yun MA1(), Bin XIA1, Jing-Mei LIU2, Shuang-Jie YIN3
Received:
2024-04-28
Accepted:
2024-08-07
Published:
2024-11-01
Online:
2024-12-04
Contact:
Feng-Yun MA
About author:
nwq515298@163.comSupported by:
摘要:
甲基异噻唑啉酮(2-Methyl-4-isothiazolin-3-one,MIT)在工业生产中广泛使用,但其在水环境中的持久性和潜在的生物毒性引起了广泛关注。 为此,基于文丘里管空化反应器,通过水力空化技术联合H2O2,针对氧化降解MIT的过程进行了研究。 以提高MIT的降解率为目的,对反应时间、入口压力、H2O2加入量及MIT初始浓度等条件进行了优化,通过一系列实验,确定最佳的反应条件如下: 即在反应时间40 min、入口压力0.5 MPa、H2O2加入量5 mL/L、MIT初始质量浓度15 mg/L的条件下,MIT的降解率达69%。 为了深入了解MIT的降解机制,采用傅里叶变换离子回旋共振质谱(FT-ICR-MS)技术分析MIT降解的中间产物,并推测了MIT在该工艺条件下的降解历程,MIT主要通过氧化反应及加成反应使其五元环结构被破坏而降解,这表明在当前的实验条件下,MIT的降解速率已经达到了一个稳定水平,进一步提高降解效率可能需要调整其他参数。 在此基础上,采用初始速率法,确定出该工艺条件下MIT的降解反应为零级反应,即反应速率与MIT的浓度无关,而是受到其他因素的影响,并利用Coast-Redfern模型,估算出MIT的表观反应活化能为31.127 kJ/mol,为进一步优化降解工艺提供了重要依据。
中图分类号:
牛文奇, 马凤云, 夏斌, 刘景梅, 殷双杰. 水力空化场强化甲基异噻唑啉酮的氧化降解[J]. 应用化学, 2024, 41(11): 1605-1619.
Wen-Qi NIU, Feng-Yun MA, Bin XIA, Jing-Mei LIU, Shuang-Jie YIN. Oxidative Degradation of Methylisothiazolinone Enhanced by Hydrodynamic Cavitation Field[J]. Chinese Journal of Applied Chemistry, 2024, 41(11): 1605-1619.
Num | Pressure at the entrance/MPa | Flow of the main road/(L·h-1) | Flow velocity at the necking point/(m·s-1) | Cavitation number |
---|---|---|---|---|
1 | 0.1 | 121.4 | 19.09 | 0.49 |
2 | 0.2 | 144.1 | 22.66 | 0.35 |
3 | 0.3 | 168.6 | 26.52 | 0.25 |
4 | 0.4 | 189.7 | 29.83 | 0.20 |
5 | 0.5 | 211.3 | 33.23 | 0.16 |
表1 不同入口压力下空化装置的流动特性
Table 1 Flow characteristics of cavitation device under different inlet pressures
Num | Pressure at the entrance/MPa | Flow of the main road/(L·h-1) | Flow velocity at the necking point/(m·s-1) | Cavitation number |
---|---|---|---|---|
1 | 0.1 | 121.4 | 19.09 | 0.49 |
2 | 0.2 | 144.1 | 22.66 | 0.35 |
3 | 0.3 | 168.6 | 26.52 | 0.25 |
4 | 0.4 | 189.7 | 29.83 | 0.20 |
5 | 0.5 | 211.3 | 33.23 | 0.16 |
Substance | Mass to charge ratio (measured value) | Mass to charge ratio (theoretical value) | Error | Molecular formula | Structural formula |
---|---|---|---|---|---|
MIT | 116.016 6 | 116.016 5 | 0.86 | C4H5NOS | |
TP1 | 187.999 2 | 187.998 8 | 2.13 | C4H7NO4S | |
TP2 | 233.042 7 | 233.043 8 | -4.72 | C4H9NO7S | |
TP3 | 243.081 4 | 243.082 3 | -4.11 | C3H7NO4 | |
TP4 | 203.102 3 | 203.102 6 | -1.48 | C4H7NO2 | |
TP5 | 142.047 7 | 142.047 5 | 1.41 | C4H9NO3 | |
TP6 | 132.029 7 | 132.029 1 | 4.54 | C4H5NO4 | |
TP7 | 271.006 3 | 271.005 3 | 3.69 | C3H5NO3S | |
TP8 | 191.973 5 | 191.972 7 | 4.17 | C3H7NO4S | |
TP9 | 194.011 8 | 194.011 7 | 0.52 | C4H3NO4S |
表2 中间产物相关参数
Table 2 Parameters related to intermediate products
Substance | Mass to charge ratio (measured value) | Mass to charge ratio (theoretical value) | Error | Molecular formula | Structural formula |
---|---|---|---|---|---|
MIT | 116.016 6 | 116.016 5 | 0.86 | C4H5NOS | |
TP1 | 187.999 2 | 187.998 8 | 2.13 | C4H7NO4S | |
TP2 | 233.042 7 | 233.043 8 | -4.72 | C4H9NO7S | |
TP3 | 243.081 4 | 243.082 3 | -4.11 | C3H7NO4 | |
TP4 | 203.102 3 | 203.102 6 | -1.48 | C4H7NO2 | |
TP5 | 142.047 7 | 142.047 5 | 1.41 | C4H9NO3 | |
TP6 | 132.029 7 | 132.029 1 | 4.54 | C4H5NO4 | |
TP7 | 271.006 3 | 271.005 3 | 3.69 | C3H5NO3S | |
TP8 | 191.973 5 | 191.972 7 | 4.17 | C3H7NO4S | |
TP9 | 194.011 8 | 194.011 7 | 0.52 | C4H3NO4S |
Num | ρ1,0/(mg·L-1) | ν0/(mg·min-1) | ln ρ1,0 | ln ν0 |
---|---|---|---|---|
1 | 15 | 0.899 | 2.708 | -0.106 |
2 | 25 | 1.056 | 3.555 | 0.054 |
3 | 45 | 1.089 | 3.807 | 0.085 |
4 | 55 | 1.073 | 4.007 | 0.070 |
表3 水力空化联合H2O2处理数据
Table 3 Hydraulic cavitation combined with H2O2 treatment data
Num | ρ1,0/(mg·L-1) | ν0/(mg·min-1) | ln ρ1,0 | ln ν0 |
---|---|---|---|---|
1 | 15 | 0.899 | 2.708 | -0.106 |
2 | 25 | 1.056 | 3.555 | 0.054 |
3 | 45 | 1.089 | 3.807 | 0.085 |
4 | 55 | 1.073 | 4.007 | 0.070 |
Temperature range/℃ | Regression equation | Heating rate/(℃·min-1) |
---|---|---|
8~32 | T=2.4t+8, R2=1.00 | 2.400 |
32~43 | T=0.355t+29.5, R2=0.94 | 0.355 |
43~47 | T=0.19t+35.27, R2=0.99 | 0.190 |
表4 升温曲线回归方程
Table 4 The equations of temperature rising rate by regression
Temperature range/℃ | Regression equation | Heating rate/(℃·min-1) |
---|---|---|
8~32 | T=2.4t+8, R2=1.00 | 2.400 |
32~43 | T=0.355t+29.5, R2=0.94 | 0.355 |
43~47 | T=0.19t+35.27, R2=0.99 | 0.190 |
Temperature range/℃ | Reaction order | Activating energy/(kJ·mol-1) | Exponential factor | 2RT/E |
---|---|---|---|---|
8~32 | 0 | 31.127 | 3.93×103 | 0.163 |
32~43 | 0.58×103 | 0.169 |
表5 动力学参数
Table 5 Kinetic parameters
Temperature range/℃ | Reaction order | Activating energy/(kJ·mol-1) | Exponential factor | 2RT/E |
---|---|---|---|---|
8~32 | 0 | 31.127 | 3.93×103 | 0.163 |
32~43 | 0.58×103 | 0.169 |
1 | 张莹莹, 唐星, 刘说, 等. 甲基(氯)异噻唑啉酮的合成工艺优化与产品表征[J]. 当代化工, 2023, 52(10): 2299-2304. |
ZHANG Y Y, TANG X, LIU S, et al. Synthesis process optimization and product characterization of methyl(chlorine)isothiazole linone[J]. Contemp Chem Ind, 2023, 52(10): 2299-2304. | |
2 | 曲振斌. 异噻唑啉酮类杀菌剂的应用探究[J]. 化工设计通讯, 2016, 42(9): 103. |
QU Z B. To explore the application of isothiazolinone fungicides[J]. Chem Eng Design Commun, 2016, 42(9): 103. | |
3 | 王磊, 武绍峰, 顾学斌. 异噻唑啉酮类杀菌剂的应用研究[J]. 工业微生物, 2015, 45(5): 60-64. |
WANG L, WU S F, GU X B. Advances in research and application of isothiazolone biocides[J]. Ind Microbiol, 2015, 45(5): 60-64. | |
4 | GARCÍA-GAVÍN J, VANSINA S, KERRE S, et al. Methylisothiazolinone, an emerging allergen in cosmetics? [J]. Contact Dermatitis, 2010, 63(2): 96-101. |
5 | 吕鹏, 吴巍, 刘丽丽, 等. 甲基异噻唑啉酮对斑马鱼胚胎的急性毒性和机制研究[J]. 生态毒理学报, 2017, 12(5): 260-269. |
LV P, WU W, LIU L L, et al. Acute toxicity and toxicology of methylisothiazolinone to zebrafish embryos[J]. Asian J Ecotoxicol, 2017, 12(5): 260-269. | |
6 | MARDONES L E, LEGNOVERDE M S, PEREYRA A M, et al. Long-lasting isothiazolinone-based biocide obtained by encapsulation in micron-sized mesoporous matrices[J]. Prog Org Coat, 2018, 119: 155-163. |
7 | KANDAVELU V, KASTIEN H, THAMPI K R. Photocatalytic degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO2 and ZnO catalysts[J]. Appl Catal B: Environ, 2004, 48(2): 101-111. |
8 | 王英才. 电化学技术处理甲基异噻唑啉酮的研究及其在反渗透浓水中的应用[D]. 天津: 天津大学, 2018. |
WANG Y C. Study on electrochemical treatment of methyl isothiazolinone and its application in reverse osmosis concentrated water[D]. Tianjin: Tianjin University, 2018. | |
9 | 蔡军, 淮秀兰, 李勋锋. 湍流作用下可压缩液体中空化泡的动力学特性[J]. 科学通报, 2010, 55(10): 857-866. |
CAI J, HUAI X L, LI X F. Investigation on cavitation bubble dynamics in compressible liquid under turbulence[J]. Chin Sci Bull, 2010, 55(10): 857-866. | |
10 | 冯中营, 吴胜举, 王烽宇, 等. 低能耗、高效率的无泵水力空化联合臭氧降解罗丹明B[J]. 水处理技术, 2023, 49(5): 110-113, 119. |
FENG Z Y, WU S J, WANG F Y, et al. Degradation of rhodamine B by economical and efficient hydrodynamic cavitation without pump combined with ozone[J]. Technol Water Treat, 2023, 49(5): 110-113, 119. | |
11 | 李明义, 朱洋, 张文斌, 等. 文丘里管内NaOH溶液的空化现象及其诱发的压力脉动特征分析[J]. 江苏大学学报(自然科学版), 2023, 44(1): 104-111. |
LI M Y, ZHU Y, ZHANG W B, et al. Cavitation phenomenon and cavitation-induced pressure fluctuations in NaOH solutions passing through Venturi pipe[J]. J Jiangsu Univ(Nat Sci Ed), 2023, 44(1): 104-111. | |
12 | WANG K, JIN R Y, QIAO Y N, et al. The removal of rhodamine B by H2O2 or ClO2 combined with hydrodynamic cavitation[J]. Water Sci Technol, 2019, 80(8): 1571-1580. |
13 | PATIL P B, BHANDARI V M, RANADE V V. Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation[J]. Ultrason Sonochem, 2021, 70: 105306. |
14 | THANEKAR P, GARG S, GOGATE P R. Hybrid treatment strategies based on hydrodynamic cavitation, advanced oxidation processes, and aerobic oxidation for efficient removal of naproxen[J]. Ind Eng Chem Res, 2019, 59(9): 4058-4070. |
15 | 海青, 陈伟政, 颜开. 新型文丘里空化器及其空化特性的数值模拟[J]. 船舶力学, 2023, 27(10): 1464-1474. |
HAI Q, CHEN W Z, YAN K. Numerical simulation study on the cavitation flow field characteristics of novel Venturi tube[J].J Ship Mechan, 2023, 27(10): 1464-1474. | |
16 | PANDA D,MANICKAM S. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrason Sonochem, 2019, 51: 526-532. |
17 | 王勇, 丁志瑶, 李明, 等. 环形狭缝型旋转式水力空化器的空化特性与降解能力[J]. 农业工程学报, 2023, 39(17): 71-79. |
WANG Y, DING Z Y, LI M, et al. Cavitation characteristics and degradation capability of an annular slitrotating hydraulic cavitation generator[J]. Transact Chin Soc Agric Eng, 2023, 39(17): 71-79. | |
18 | 张承昕, 徐昊, 王余莲, 等. 纳米金@石墨烯复合多孔材料还原4-硝基苯酚[J]. 中国粉体技术, 2023, 29(4): 80-93. |
ZHANG C X, XU H, WANG Y L, et al. Reduction of 4-nitrophenol with nano-gold@graphene composite porous material[J]. China Powder Sci Technol, 2023, 29(4): 80-93. | |
19 | HUNG C M, HUANG C P, CHEN C W, et al. Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments[J]. Environ Pollution, 2021, 286: 117245. |
20 | 杨思静. 水力空化强化ClO2破解甲基橙和苯并[a]芘机理研究[D]. 太原: 中北大学, 2018. |
YANG S J. Study on electrochemical treatment of methyl isothiazolinone and its application in reverse osmosis concentrated water [D]. Taiyuan: North University of China, 2018. | |
21 | 黄永春, 李晴, 邓冬梅, 等. 水力空化深度处理焦化废水的实验研究[J]. 工业水处理, 2017, 37(4): 53-57. |
HUANG Y C, LI Q, DENG D M, et al. Experimental research on the advanced treatment of coking wastewater by hydrodynamic cavitation[J]. Ind Water Treat, 2017, 37(4): 53-57. | |
22 | 徐世贵, 刘月娥, 王金榜, 等. 水力空化-Fenton氧化联合超声吸附处理煤气化废水[J]. 化工环保, 2019, 39(6): 634-640. |
XU S G, LIU Y E, WANG J B, et al. Treatment of coal gasification wastewater by hydrodynamic cavitation-Fenton oxidation combined with ultrasonic adsorption[J]. Environ Protection Chem Ind, 2019, 39(6): 634-640. | |
23 | YI L D, LI B Q, SUN Y N, et al. Degradation of norfloxacin in aqueous solution using hydrodynamic cavitation: optimization of geometric and operation parameters and investigations on mechanism[J]. Separation Purification Technol, 2021, 259: 118166. |
24 | THANEKAR P, LAKSHMI N J, SHAH M, et al. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes[J]. Proc Safety Environ Protect, 2020, 143: 222-230. |
25 | RAUT-JADHAV S, SAINI D, SONAWANE S, et al. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution[J]. Ultrason Sonochem, 2016, 28: 283-293. |
26 | WU Z L, TAGLIAPIETRA S, GIRAUDO A, et al. Harnessing cavitational effects for green process intensification[J]. Ultrasonics Sonochem, 2019, 52: 530-546. |
27 | MUKHERJEE A, MULLICK A, TEJA R, et al. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: a case study for real life greywater treatment[J]. Ultrason Sonochem, 2020, 66: 105-116. |
28 | 陈吉超, 马凤云, 刘景梅, 等. 水力空化场下苯-甲醇低温烷基化制备二甲苯[J]. 石油学报(石油加工), 2021, 37(1): 190-200. |
CHEN J C, MA F Y, LIU J M, et al. Low temperature alkylation of benzene and methanol in hydrocavitation field[J]. Acta Petrolei Sin (Petroleum Proc Section), 2021, 37(1): 190-200. | |
29 | WANG J H, WANG J, YUAN R F, et al. Degradation of acid red 73 wastewater by hydrodynamic cavitation combined with ozone and its mechanism[J]. Environ Res, 2022, 210: 112954. |
30 | PANDA D, MANICKAM S. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrason Sonochem, 2019, 51: 526-532. |
31 | GENG M, THAGARD S M. The effects of externally applied pressure on the ultrasonic degradation of rhodamine B[J]. Ultrason Sonochem, 2013, 20(1): 618-625. |
32 | 李松林, 周亚平, 刘俊吉, 等. 物理化学[M]. 北京: 高等教育出版社, 2009. |
LI S L, ZHOU Y P, LIU J J, et al. Physical chemistry[M]. Beijing: Higher Education Press, 2009. | |
33 | WANG H Z. Study on the kinetics of toluene disproportionation in H-IDG (ZSM-5) zeolite[J]. J Fuel Chem Technol, 1983, 11(4): 86-91. |
[1] | 卢星辰, 刘健, 杜娟, 高小荣, 许勇, 任小庆. 一种可降解半互穿网络暂堵剂的制备及性能[J]. 应用化学, 2024, 41(9): 1271-1283. |
[2] | 贾贞健, 韩曦, 张杰. RuO2/TiO2复合催化剂制备及光催化性能[J]. 应用化学, 2024, 41(9): 1324-1332. |
[3] | 孙天礼, 朱国, 何海, 黄炳坤, 熊兆锟, 赖波. 单原子催化剂在类芬顿水处理领域的研究进展[J]. 应用化学, 2024, 41(2): 217-229. |
[4] | 郑建华, 管振萍, 刘国煜, 曹向禹, 郑顺姬, 关美艳. 过硫酸盐增强花状MnCo2O4可见光降解性能[J]. 应用化学, 2023, 40(7): 1034-1043. |
[5] | 沈方燮, 万翔, 王卫超. 基于锰基YMn2O5催化剂室温降解挥发性有机化合污染物[J]. 应用化学, 2023, 40(6): 888-895. |
[6] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[7] | 刘盛杰, 叶永杰, 刘银怡, 林淑满, 谢浩源, 刘文婷, 许伟钦. 基于泡沫铜的多孔碳均匀负载Cu3P纳米颗粒的制备及其光催化降解染料性能[J]. 应用化学, 2022, 39(7): 1090-1097. |
[8] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
[9] | 徐一鑫, 王爽, 全静, 高婉婷, 宋天群, 杨梅. 二硫化钼量子点/还原氧化石墨烯复合材料的制备及其光催化降解有机染料、四环素和Cr(VI)[J]. 应用化学, 2022, 39(5): 769-778. |
[10] | 查晓松, 张琳, 翁元婕, 冯智梁, 金苏雯. 紫外高级还原技术还原降解水中N-亚硝基二甲胺[J]. 应用化学, 2022, 39(3): 451-460. |
[11] | 周玉凤, 周川巍, 胡桐泽, 段展鹏, 王颢潼, 石淑云. Fe/V-Sb2O3复合材料的构筑及光催化降解医药废水[J]. 应用化学, 2022, 39(10): 1572-1578. |
[12] | 贺全宝, 胡征, 葛明. BiOX(X=Cl,Br,I)复合光催化材料降解水体中抗生素研究进展[J]. 应用化学, 2021, 38(7): 754-766. |
[13] | 赵星鹏, 王娅乔, 高生旺, 朱建超王国英, 夏训峰, 王洪良, 王书平. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑[J]. 应用化学, 2021, 38(4): 422-430. |
[14] | 霍朝晖, 杨晓珊, 陈晓丽, 张刚, 尹伟, 曹曼丽, 史蕾, 邱燕璇. 纳米银/二维石墨相氮化碳/还原氧化石墨烯复合材料的制备及其光催化降解抗生素[J]. 应用化学, 2020, 37(4): 471-480. |
[15] | 黑嘉慧, 杨莉宁, 李珺. 噻吩醛缩乙二胺席夫碱及其配合物的合成与光催化性能[J]. 应用化学, 2019, 36(8): 949-957. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||