1 |
任飞, 石建兵, 佟斌, 等. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
|
|
REN F, SHI J B, TONG B, et al. Near infrared fluorescent dyes with aggregation-induced emission[J]. Prog Chem, 2021, 33(3): 341-354.
|
2 |
WU D, SEDGWICK A C, GUNNLAUGSSON T, et al. Fluorescent chemosensors: the past, present and future[J]. Chem Soc Rev, 2017, 46(23): 7105-7123.
|
3 |
张鹏, 郭心洁, 张倩, 等. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
|
|
ZHANG P, GUO X J, ZHANG Q, et al. Photochemical sensing based on the aggregation of organic dyes[J]. Prog Chem, 2020, 32(2/3): 286-297.
|
4 |
韩鹏博, 徐赫, 安众福, 等. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
|
|
HAN P B, XU H, AN Z F, et al. Aggregation-induced emission[J]. Prog Chem, 2022, 34(1): 1-130.
|
5 |
程金华, 姜鸿基. 末端四苯乙烯荧光团标记法研究双亲性嵌段聚合物的自组装行为[J]. 应用化学, 2019, 36(4): 440-450.
|
|
CHENG J H, JIANG H J. Study on self-assembly behaviors of an amphiphilic block polymer by terminally grafting tetraphenylethene-based aggregation-induced emission active moietys[J]. Chin J Appl Chem, 2019, 36(4): 440-450.
|
6 |
LUO J, XIE Z, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem Commun, 2001(18): 1740-1741.
|
7 |
XIAO P, XIE W, ZHANG J, et al. De novo design of reversibly pH-switchable NIR-II aggregation-induced emission luminogens for efficient phototheranostics of patient-derived tumor xenografts[J]. J Am Chem Soc, 2023, 145(1): 334-344.
|
8 |
WU Y, LI J, SHEN Z, et al. Double-pronged antimicrobial agents based on a donor-π-acceptor type aggregation-induced emission luminogen[J]. Angew Chem Int Ed, 2022, 61(47): e202212386.
|
9 |
YANG J, FANG M, LI Z. Organic luminescent materials: the concentration on aggregates from aggregation-induced emission[J]. Aggregate, 2020, 1(1): 6-18.
|
10 |
NIE X, HUANG W, ZHOU D, et al. Kinetic and thermodynamic control of tetraphenylethene aggregation-induced emission behaviors[J]. Aggregate, 2022, 3(4): e165.
|
11 |
LIU J, ZHANG H, HU L, et al. Through-space interaction of tetraphenylethylene: what, where, and how[J]. J Am Chem Soc, 2022, 144(17): 7901-7910.
|
12 |
WU C, LI J, DUAN X. Enrichment of aggregation-induced emission aggregates using acoustic streaming tweezers in microfluidics for trace human serum albumin detection[J]. Anal Chem, 2023, 95(3): 2071-2078.
|
13 |
SUN Y, LEI Z, MA H. Twisted aggregation-induced emission luminogens (AIEgens) contribute to mechanochromism materials: a review[J]. J Mater Chem C, 2022, 10(40): 14834-14867.
|
14 |
XIE Y, LI Z. Development of aggregated state chemistry accelerated by aggregation-induced emission[J]. Natl Sci Rev, 2021, 8(6): nwaa199.
|
15 |
ZHAO C X, LIU T, XU M, et al. A fundamental study on the fluorescence-quenching effect of nitro groups in tetraphenylethene AIE dyes with electron-withdrawing groups[J]. Chin Chem Lett, 2021, 32(6): 1925-1928.
|
16 |
HONG Y, LAM J W Y, TANG B Z. Aggregation-induced emission[J]. Chem Soc Rev, 2011,40: 5361-5388.
|
17 |
DING D, LI K, LIU B, et al. Bioprobes based on AIE fluorogens[J]. Acc Chem Res, 2013, 46(11): 2441-2453.
|
18 |
WU W, LIU B. Aggregation-induced emission: challenges and opportunities[J]. Nat Sci Rev, 2021, 8(6): nwaa222.
|
19 |
YANG J, CHI Z, ZHU W, et al. Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen[J]. Sci China Chem, 2019, 62(9): 1090-1098.
|
20 |
王涛, 马拉毛草, 马恒昌. 基于聚集诱导发光荧光探针的细胞成像研究进展[J]. 应用化学, 2018, 35(10): 1155-1165.
|
|
WANG T, MA L M C, MA H C. Research progress on cell imaging based on the aggregation-induced emission fluorescent probes[J]. Chin J Appl Chem, 2018, 35(10): 1155-1165.
|
21 |
ZHENG Z, ZHANG T, LIU H, et al. Bright near-infrared aggregation-induced emission luminogens with strong two-photon absorption, excellent organelle specificity, and efficient photodynamic therapy potential[J]. ACS Nano, 2018, 12(8): 8145-8159.
|
22 |
QIN W, ZHANG P, LI H, et al. Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration[J]. Chem Sci, 2018, 9(10): 2705-2710.
|
23 |
CHEN M, XIE W, LI D, et al. Utilizing a pyrazine-containing aggregation-induced emission luminogen as an efficient photosensitizer for imaging-guided two-photon photodynamic therapy[J]. Chem Eur J, 2018, 24(62): 16603-16608.
|
24 |
KIM M H, CHO B R. Small-molecule two-photon probes for bioimaging applications[J]. Chem Rev, 2015, 115(11): 5014-5055.
|
25 |
ZHENG K, CHEN H, XIAO Y, et al. A novel strategy to design and construct AIE-active mechanofluorochromic materials via regulation of molecular structure[J]. Chem Eur J, 2021, 27(60): 14964-14970.
|
26 |
李亚雯, 敖宛彤, 金慧琳, 等. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
|
|
LI Y W, AO W T, JIN H L, et al. Aggregation-induced emission of tetraphenylethene derivatives with macrocycles via host-guest interactions[J]. Prog Chem, 2019, 31(1): 121-134.
|
27 |
MENG Q, CUI L, LIAO Q, et al. Chiral cyclic architectonics with tetraphenylethylenes: conformation immobilization, optical resolution and circularly polarized luminescence[J]. Chem Commun, 2022, 58(77): 10384-10387.
|
28 |
WANG X, SONG Y, PAN G, et al. Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers[J]. Chem Sci, 2020,11(40): 10921-10927.
|
29 |
YUAN Y X, JIA J H, SONG Y P, et al. Fluorescent TPE macrocycle relayed light-harvesting system for bright customized-color circularly polarized luminescence[J]. J Am Chem Soc, 2022, 144(12): 5389-5399.
|
30 |
MELHUISH W H. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute[J]. J Phys Chem, 1961, 65(2): 229-235.
|
31 |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09, Revision B[CP]. 01, Gaussian, Inc., Wallingford CT, 2010.
|
32 |
石玉芳, 王迎进, 孙金鱼, 等. 含多甲氧基芳香基双查尔酮的合成、表征及光热性能[J]. 应用化学, 2022, 39(2): 235-240.
|
|
SHI Y F, WANG Y J, SUN J Y, et al. Synthesis, characterization, photothermal properties of dichalcone containing polymethoxy aromatic group[J]. Chin J Appl Chem, 2022, 39(2): 235-240.
|