[1] |
ZHAO Q, TU Z, WEI S, et al. Building organic/inorganic hybridinterphases for fast interfacial transport in rechargeable metal batteries[J]. Angew Chem Int Ed, 2018, 57(4):992-996.
|
[2] |
BASILE A, BHATT A I, O′MULLANE A P. Stabilizing lithium metal using ionic liquids for long-lived batteries[J]. Nat Commun, 2016, 7:11794-11805.
|
[3] |
SHIM J, KIM H J, KIM B G, et al. 2D boron nitridenanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries[J]. Energy Environ Sci, 2017, 10:1911-1916.
|
[4] |
FAN X, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries[J]. Nat Nanotechnol, 2018, 13:715-722.
|
[5] |
HU Z, ZHANG S, DONG S, et al. Poly (ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes[J]. Chem Mater, 2017, 29(11):4682-4689.
|
[6] |
CHEN S, ZHENG J, YU L, et al. High-efficiency lithium metalbatteries with fire-retardant electrolytes[J]. Joule, 2018, 2(1):1548-1558.
|
[7] |
TONGB, HUANGJ, ZHOUZ. Thesaltmatters: enhancedreversibilityofLi-O2batterieswitha Li[(CF3SO2)(n-C4F9SO2) N]-based electrolyte[J]. Adv Mater, 2018, 30(1):1704841.
|
[8] |
CAO Y, LI G T, Li XB. Graphene/layered double hydroxide nano-composite: properties, synthesis, and applications[J]. Chem Eng J, 2016, 292:207-223.
|
[9] |
YAN C, CHENG X B, TIAN Y, et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition[J]. Adv Mater, 2018, 30(25):1707629.
|
[10] |
DONG T, ZHANG J, XU G, et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltagelithiummetal battery[J]. Energy Environ Sci, 2018, 11:1197-1203.
|
[11] |
YANG X Y, FENG X L, JIN X, et al. An illumination-assisted flexible self-powered energy system based on a Li-O2 battery[J]. Angew Chem Int Ed, 2019, 58(46):16411-16415.
|
[12] |
YE H, ZHANG Y, YIN Y X, et al. An outlook on low-volume-change lithium metal anodes for long-life batteries[J]. ACS Central Sc, 2020, 6(5):661-671.
|
[13] |
LI Z, LIU K, FAN K, et al. Active-oxygen-enhanced homogeneous nucleation of lithium metal onultrathin layered double hydroxide[J]. Angew Chem Int Ed, 2019, 58(12):3962-3966.
|
[14] |
陈果, 刘立炳, 惠怀兵, 等. LiDFOB用于锂离子电池电解液添加剂的性能研究[J]. 电源技术, 2015, 39(7):1387-1389.
|
|
CHEN G, LIU L B, HUI H B, et al. Research on the performance of LiDFOB used as electrolyte additives for lithium-ion batteries[J]. Power Technol, 2015, 39(7):1387-1389.
|
[15] |
CAO X, XU W, ZHANG J G, et al. Monolithic solid-electrolyteinterphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nat Energy, 2019, 4:796-805.
|
[16] |
JIAO S H, XU W, ZHANG J G, et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries[J]. Joule, 2018, 2(1):110-124.
|
[17] |
REN X D, XU W, ZHANG J G, et al. Localized high-concentration sulfone electrolytes forhigh-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8):1877-1892.
|
[18] |
张晓研, 任宇飞, 高洁, 等. 动力电池电解液用添加剂的研究进展[J]. 储能科学与技术, 2018, 7(3):404-417.
|
|
ZHANG X Y, REN Y F, GAO J, et al. Research progress of additives for power battery electrolyte[J]. Energy Stor Sci Technol, 2018, 7(3):404-417.
|
[19] |
邵俊华, 孔东波, 王亚洲. 成膜添加剂用于高能量密度电池电解液的综述[J]. 电池, 2019, 49(5):440-443.
|
|
SHAO J H, KONG D B, WANG Y Z. Review of film-forming additives used in high energy density battery electrolyte[J]. Battery, 2019, 49(5):440-443.
|
[20] |
XIE Y, XIANG H, SHI P, et al. Enhanced separatorwettability by LiTFSI and its application for lithium metal batteries[J]. J Membr Sci, 2017, 524(15):315-320.
|
[21] |
ZHENG J M, ENGELHARD M H, MEI D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nat Energy, 2017, 2(3):17012-17020.
|
[22] |
DENG T, FAN X L, CAO L S, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries[J]. Joule, 2019, 3(10):2550-2564.
|
[23] |
DROZHZHIN O A, SHEVCHENKO V A, ZAKHARKIN M V, et al. Improving salt-to-solvent ratio to enable high-voltage electrolyte stability for advanced Li-ion batteries[J]. Electrochim Acta, 2018, 263(10):127-133.
|
[24] |
XU M Q, HAO L S, LIU Y L, et al. Experimental and theoretica investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries[J]. J Phys Chem C, 2011, 115(13):6085-6095.
|
[25] |
WANG X S, ZHENG X W, LIAO Y H, et al. Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive[J]. J Power Sources, 2016, 338(15):108-116.
|
[26] |
XU G J, PANG C G, CHEN B B, et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-ionbatteries[J]. Adv Energy Mater, 2017, 8(9):1701398.
|