Chinese Journal of Applied Chemistry ›› 2025, Vol. 42 ›› Issue (9): 1221-1232.DOI: 10.19894/j.issn.1000-0518.250015
• Full Papers • Previous Articles Next Articles
Long ZHOU, Yu-Jing TANG(
), Yi-Jing JIA, Xiao-Min LI, Ying-Nan DENG, Si-Jia WEI
Received:2025-01-07
Accepted:2025-07-17
Published:2025-09-01
Online:2025-09-28
Contact:
Yu-Jing TANG
About author:tangyj.bjhy@sinopec.comSupported by:CLC Number:
Long ZHOU, Yu-Jing TANG, Yi-Jing JIA, Xiao-Min LI, Ying-Nan DENG, Si-Jia WEI. Isothermal Crystallization Kinetics of Ethylene Vinyl Alcohol Copolymer[J]. Chinese Journal of Applied Chemistry, 2025, 42(9): 1221-1232.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.250015
| Sample | Tm/℃ | Tc/℃ | Tg/℃ | ΔHm/(J·g-1) | ΔHc/(J·g-1) | Xc/% |
|---|---|---|---|---|---|---|
| F171B | 182.31 | 157.48 | 60.30 | 69.80 | 65.35 | 44.23 |
| H171B | 172.05 | 150.52 | 56.10 | 66.55 | 62.22 | 42.17 |
| E105B | 168.29 | 148.50 | 54.53 | 63.13 | 60.29 | 40.00 |
Table 1 Thermodynamic information of F171B, H171B and E105B
| Sample | Tm/℃ | Tc/℃ | Tg/℃ | ΔHm/(J·g-1) | ΔHc/(J·g-1) | Xc/% |
|---|---|---|---|---|---|---|
| F171B | 182.31 | 157.48 | 60.30 | 69.80 | 65.35 | 44.23 |
| H171B | 172.05 | 150.52 | 56.10 | 66.55 | 62.22 | 42.17 |
| E105B | 168.29 | 148.50 | 54.53 | 63.13 | 60.29 | 40.00 |
Fig.3 DSC curves of EVOH samples (A)F171B, (B)H171B, (C)E105B for secondary heating; D. Equilibrium melting temperatures of F171B (219.6 ℃), H171B (218.7 ℃) and E105B (216.8 ℃)
| Crystal growth pattern | Heterogeneous nucleation | Homogeneous nucleation |
|---|---|---|
| One-dimensional growth (acicular crystal) | 1 | 2 |
| Two-dimensional growth (lamellar crystal) | 2 | 3 |
| Three-dimensional growth (spherocrystal) | 3 | 4 |
Table 2 Theoretical values of Avrami index for different nucleation and growth mechanisms[27]
| Crystal growth pattern | Heterogeneous nucleation | Homogeneous nucleation |
|---|---|---|
| One-dimensional growth (acicular crystal) | 1 | 2 |
| Two-dimensional growth (lamellar crystal) | 2 | 3 |
| Three-dimensional growth (spherocrystal) | 3 | 4 |
Fig.5 Avrami analysis of the (A) F171B, (B) H171B and (C) E105B for X(t) between 3% and 100%; (D) Super cooling degree dependent of t1/2 for F171B, H171B and E105B
| Sample | Tiso/℃ | Primary crystallization | Secondary crystallization | t1/2/min | ||
|---|---|---|---|---|---|---|
| n1 | K1/min-1 | n2 | K2/min-1 | |||
| F171B | 164 | 2.56 | 0.046 | 1.22 | 0.383 | 2.88 |
| 165 | 2.46 | 0.023 | 1.18 | 0.213 | 4.17 | |
| 166 | 2.63 | 0.004 | 1.16 | 0.098 | 7.98 | |
| 167 | 2.33 | 0.003 | 1.21 | 0.044 | 12.20 | |
| H171B | 158 | 2.70 | 0.105 | 1.10 | 0.318 | 2.53 |
| 159 | 2.54 | 0.043 | 1.12 | 0.186 | 3.75 | |
| 160 | 2.71 | 0.011 | 1.19 | 0.083 | 6.90 | |
| 161 | 2.46 | 0.003 | 1.05 | 0.054 | 12.40 | |
| E105B | 155 | 2.58 | 0.208 | 1.09 | 0.431 | 1.90 |
| 156 | 2.72 | 0.064 | 1.09 | 0.245 | 3.05 | |
| 157 | 2.53 | 0.025 | 0.98 | 0.178 | 4.95 | |
| 158 | 2.34 | 0.007 | 1.17 | 0.047 | 10.25 | |
Table 3 Crystallization kinetics parameters of F171B, H171B and E105B
| Sample | Tiso/℃ | Primary crystallization | Secondary crystallization | t1/2/min | ||
|---|---|---|---|---|---|---|
| n1 | K1/min-1 | n2 | K2/min-1 | |||
| F171B | 164 | 2.56 | 0.046 | 1.22 | 0.383 | 2.88 |
| 165 | 2.46 | 0.023 | 1.18 | 0.213 | 4.17 | |
| 166 | 2.63 | 0.004 | 1.16 | 0.098 | 7.98 | |
| 167 | 2.33 | 0.003 | 1.21 | 0.044 | 12.20 | |
| H171B | 158 | 2.70 | 0.105 | 1.10 | 0.318 | 2.53 |
| 159 | 2.54 | 0.043 | 1.12 | 0.186 | 3.75 | |
| 160 | 2.71 | 0.011 | 1.19 | 0.083 | 6.90 | |
| 161 | 2.46 | 0.003 | 1.05 | 0.054 | 12.40 | |
| E105B | 155 | 2.58 | 0.208 | 1.09 | 0.431 | 1.90 |
| 156 | 2.72 | 0.064 | 1.09 | 0.245 | 3.05 | |
| 157 | 2.53 | 0.025 | 0.98 | 0.178 | 4.95 | |
| 158 | 2.34 | 0.007 | 1.17 | 0.047 | 10.25 | |
Fig.7 3 crystal growth modes: A. Regime Ⅰ, B. Regime Ⅱ, C. Regime Ⅲ, where the shaded part represents the growing surface and the white square represents the folded chain stem cross section
| Sample | Kg/K2 | G0/min-1 | σ/(J·m-2) | σF/(J·m-2) |
|---|---|---|---|---|
| F171B | 7.29×105 | 7.19×1015 | 0.013 | 0.313 |
| H171B | 9.45×105 | 9.51×1018 | 0.013 | 0.405 |
| E105B | 9.92×105 | 6.32×1019 | 0.012 | 0.426 |
Table 4 Calculated value of lateral and fold surface free energy for F171B, H171B and E105B
| Sample | Kg/K2 | G0/min-1 | σ/(J·m-2) | σF/(J·m-2) |
|---|---|---|---|---|
| F171B | 7.29×105 | 7.19×1015 | 0.013 | 0.313 |
| H171B | 9.45×105 | 9.51×1018 | 0.013 | 0.405 |
| E105B | 9.92×105 | 6.32×1019 | 0.012 | 0.426 |
Fig.9 Effect of ethylene content on EVOH crystallization. The blue balls represent VA repeating unit of EVOH, and the gray balls represent ET repeating unit. The crystalline of EVOH is represented by light orange areas, and light gray areas are amorphous
| [1] | NAKANO A. Ethylene vinyl alcohol co-polymer as a high-performance membrane: an EVOH membrane with excellent biocompatibility[J]. High-perform Membr Dialyzers, 2011, 173: 164-171. |
| [2] | FENG Y, EUN J, MOON S, et al. Assessment of gas dispersion near an operating landfill treated by different intermediate covers with soil alone, low-density polyethylene (LLDPE), or ethylene vinyl alcohol (EVOH) geomembrane[J]. Environ Sci Pollut Res, 2023, 30(4): 9672-9687. |
| [3] | MAES C, LUYTEN W, HERREMANS G, et al. Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): a review[J]. Polym Rev, 2018, 58(2): 209-246. |
| [4] | MARCONI W, MARCONE R, PIOZZI A. Sulfation and preliminary biological evaluation of ethylene-vinyl alcohol copolymers[J]. Macromol Chem Phys, 2000, 201(6): 715-721. |
| [5] | MURIEL-GALET V, TALBERT J N, HERNANDEZ-MUNOZ P, et al. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications[J]. J Agric Food Chem, 2013, 61(27): 6720-6727. |
| [6] | LI Z L, LV A, LI L, et al. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: synthesis, characterization, and thermal property[J]. Polymer, 2013, 54(15): 3841-3849. |
| [7] | SHI C, TANG Y, LU Y, et al. Crystallization kinetics of ethylene vinyl alcohol copolymer revealed by fast scanning chip calorimetry analysis[J]. Macromolecules, 2023, 56(18): 7597-7605. |
| [8] | MOKWENA K K, TANG J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods[J]. Crit Rev Food Sci Nutr, 2012, 52(7): 640-650. |
| [9] | MOKWENA K K, TANG J, LABORIE M P. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films[J]. J Food Eng, 2011, 105(3): 436-443. |
| [10] | ZHANG Z, BRITT I J, TUNG M A. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity[J]. J App Polym Sci, 2001, 82(8): 1866-1872. |
| [11] | MYRAMATSU M, OKURA M, KUBOYAMA K, et al. Oxygen permeability and free volume hole size in ethylene-vinyl alcohol copolymer film: temperature and humidity dependence[J]. Radiat Phys Chem, 2003, 68(3/4): 561-564. |
| [12] | VANNINI M, MARCHESE P, CELLI A, et al. Strategy to modify the crystallization behavior of EVOH32 through interactions with low-molecular-weight molecules[J]. Ind Eng Chem Res, 2016, 55(12): 3517-3524. |
| [13] | NAKAMAE K, KAMEYAMA M, MATSUMOTO T. Elastic moduli of the crystalline regions in the direction perpendicular to the chain axis of ethylene‐vinyl alcohol copolymers[J]. Polym Eng Sci, 1979, 19(8): 572-578. |
| [14] | CERRADA M L, PEREZ E, PERENA J M, et al. Wide-angle X-ray diffraction study of the phase behavior of vinyl alcohol-ethylene copolymers[J]. Macromolecules, 1998, 31(8): 2559-2564. |
| [15] | LAGARON J M, CATALA R, GAVARA R. Structural characteristics defining high barrier properties in polymeric materials[J]. Mater Sci Technol, 2004, 20(1): 1-7. |
| [16] | TAKAHASHI M, TASHIRO K, AMIYA S. Crystal structure of ethylene-vinyl alcohol copolymers[J]. Macromolecules, 1999, 32(18): 5860-5871. |
| [17] | DJEZZAR K, PENEL L, LEFEBVRE J M, et al. Tensile drawing of ethylene/vinyl-alcohol copolymers. part 1. influence of draw temperature on the mechanical behaviour[J]. Polymer, 1998, 39(17): 3945-3953. |
| [18] | PENEL L, DJEZZAR K, LEFEBVRE J M, et al. Tensile drawing of ethylene/vinyl alcohol copolymers: II. investigation of the strain-induced mesomorphic structure[J]. Polymer, 1998, 39(18): 4279-4287. |
| [19] | El-SAFTAWY A A, RAGHEB M S, ZAKHARY S G. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer[J]. Radiat Phys Chem, 2018, 147: 106-113. |
| [20] | LOPEZ DE DICASTILLO C, NERIN C, ALFARO P, et al. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract[J]. J Agric Food Chem, 2011, 59(14): 7832-7840. |
| [21] | ALVAREZ V A, KENNY J M, VAZQUEZ A. Isothermal crystallization of poly(vinyl alcohol-co-ethylene)[J]. J App Polym Sci, 2003, 89(4): 1071-1077. |
| [22] | MARAND H, XU J, SRINIVAS S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-Weeks extrapolations[J]. Macromolecules, 1998, 31(23): 8219-8229. |
| [23] | XIE Z N, YE H M, CHEN T, et al. Melting and annealing peak temperatures of poly(butylene succinate) on the same Hoffman-Weeks plot parallel to Tm= Tc line[J]. Chin J Polym Sci, 2021, 39: 745-755. |
| [24] | POURALI M, PETERSON A M. A tale of two polyamides: comparing the crystallization kinetics of a hot-melt adhesive and a PA 6/66 copolymer[J]. Thermochim Acta, 2022, 710: 179176. |
| [25] | PATEL R M. Crystallization kinetics modeling of high density and linear low density polyethylene resins[J]. J App Polym Sci, 2012, 124(2): 1542-1552. |
| [26] | GODOVSKY Y K, SLONIMSKY G L. Kinetics of polymer crystallization from the melt (calorimetric approach)[J]. J Polym Sci: Polym Phys Ed, 1974, 12(6): 1053-1080. |
| [27] | 杨海, 刘天西. 聚合物结晶动力学[J]. 南阳师范学院学报, 2007(12): 37-40, 51. |
| YANG H, LIU T X. Crystallization kinetics of polymers[J]. J Nanyang Norm Univ, 2007(12): 37-40, 51. | |
| [28] | 任敏巧, 张志英, 莫志深, 等. 高聚物结晶后期动力学过程的研究进展[J]. 高分子通报, 2003(3): 15-22. |
| REN M Q, ZHANG Z Y, MO Z S, et al. The development of research on the later stage kinetics in polymer crystallization[J]. Polym Bull, 2003(3): 15-22. | |
| [29] | 张垚, 唐毓婧, 宋建会, 等. 乙烯-乙烯醇共聚物的连续自成核退火热分级研究[J]. 石油化工, 2022, 51(10): 1175-1181. |
| ZHANG Y, TANG Y J, SONG J H, et al. Successive self-nucleation and annealing thermal fractionation study of ethylene-vinyl alcohol copolymer[J]. Petrochem Technol, 2022, 51(10): 1175-1181. | |
| [30] | FRANCO-URQUIZA E A, SANTANA O, MASPOCH M L. Influence of the melt extrusion process on the mechanical behavior and the thermal properties of ethylene vinyl alcohol copolymer by applying the successive self-nucleation and annealing thermal fractionation[J]. Fiber Polym, 2021, 22(7): 1822-1829. |
| [31] | 周阳. 基于戊二胺的生物基长碳链尼龙的合成与性能研究[D]. 北京: 北京化工大学, 2023. |
| ZHOU Y. Study on the synthesis and properties of bio-based long carbon chain nylon with cadaverine[D]. Beijing: Beijing University of Chemical Technology, 2023. | |
| [32] | VYAZOVKIN S. Activation energies and temperature dependencies of the rates of crystallization and melting of polymers[J]. Polymers, 2020, 12(5): 1070. |
| [33] | 陈宁, 胡继锋, 李莉. 长链乙烯酯改性聚乙烯醇的结晶动力学[J]. 合成树脂及塑料, 2017, 34(4): 1-5. |
| CHEN N, HU J F, LI L. Crystallization kinetics of MPVA modified by long chains vinyl ester[J]. China Synth Resin Plastics, 2017,34(4):1-5. | |
| [34] | LIU M Y, ZHAO Q X, WANG Y D, et al. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polym, 2003, 44(8): 2537-2545. |
| [35] | 严大东, 张兴华. 聚合物结晶理论进展[J]. 物理学报, 2016, 65(18): 106-116. |
| YAN D D, ZHANG X H. Recent development on the theory of polymer crystallization[J]. Acta Phys Sin, 2016, 65(18): 106-116. | |
| [36] | WANG B, DING Z, HU G. Melting behavior and isothermal crystallization kinetics of nylon 11/EVOH/dicumyl peroxide blends[J]. Polym Eng Sci, 2008, 48(12): 2354-2361. |
| [37] | HAO B, DING Z, TAO X, et al. Atomic-scale imaging of polyvinyl alcohol crystallinity using electron ptychography[J]. Polymer, 2023, 284: 126305. |
| [38] | LOPEZ-RUBIO A, LAGARON J M, GIMENEZ E, et al. Morphological alterations induced by temperature and humidity in ethylene-vinyl alcohol copolymers[J]. Macromolecules, 2003, 36(25): 9467-9476. |
| [39] | LAURITZEN JR J I, HOFFMAN J D. Extension of theory of growth of chain‐folded polymer crystals to large undercoolings[J]. J Appl Phys, 1973, 44(10): 4340-4352. |
| [40] | SU G, ZHOU T, LIU X, et al. Two-dimensional correlation infrared spectroscopy reveals the detailed molecular movements during the crystallization of poly(ethylene-co-vinyl alcohol)[J]. RSC Adv, 2015, 5(103): 84729-84745. |
| [1] | HE Yufang, YAN Pinping, HUANG Baoquan, LUO Fubin, LI Hongzhou, QIAN Qingrong, CHEN Qinghua. Thermal Conductivity and Crystallization Behavior of Polyethylene Glycol/Boron Nitride Phase Change Composites [J]. Chinese Journal of Applied Chemistry, 2020, 37(6): 650-657. |
| [2] | TANG Long-Xiang, YAN Man-Qing, LIU Chun-Hua, WANG Ping-Hua. Studies on Crystallization Behaviors of UV-photocrosslinked High-density Polyethylene [J]. Chinese Journal of Applied Chemistry, 2009, 26(09): 1019-1022. |
| [3] | Gong Fanghong, Li Jinchun, Yu Qiang, Lin Mingde . On the crystallization Behavior of Silane Crosslinked LDPE and Peroxide Crosslinked LDPE [J]. Chinese Journal of Applied Chemistry, 1998, 0(5): 31-34. |
| [4] | Liu Jingjiang, Tang Gongben, Qu Guijie, Zhou Huarong, Guo Qipeng. EFFECT OF RARE EARTH OXIDES ON THE CRYSTALLIZATION KINETICS OF ISOTACTIC POLYPROPYLENE [J]. Chinese Journal of Applied Chemistry, 1992, 0(6): 26-30. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||