Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (5): 728-738.DOI: 10.19894/j.issn.1000-0518.240028
• Full Papers • Previous Articles Next Articles
Xiao-Jing CHAI1, Rui-Rui ZHAO1, Yuan ZHANG2, Chuan DONG2(), Shao-Min SHUANG1()
Received:
2024-01-28
Accepted:
2024-04-14
Published:
2024-05-01
Online:
2024-06-03
Contact:
Chuan DONG,Shao-Min SHUANG
About author:
smshuang@sxu.edu.cnSupported by:
CLC Number:
Xiao-Jing CHAI, Rui-Rui ZHAO, Yuan ZHANG, Chuan DONG, Shao-Min SHUANG. Colorimetric/Fluorometric Detection of Adenosine-5′-Triphosphate Based on Metal-Organic Framework Cu@Sc-MOF Nanozyme[J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 728-738.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240028
Fig.3 (A) XRD pattern, (B) FT-IR spectra, (C) nitrogen adsorption and desorption isotherm curves, (D) XPS spectra of Cu@Sc-MOF and Sc-MOF, and (E) C1s, (F) O1s, (G) Sc2p (H) Cu2p and (I) N1s high-resolution spectrum of Cu@Sc-MOF
Fig.4 Dependence of relative catalytic activity of Cu@Sc-MOF toward oxidation of TMB/OPD by H2O2 on (A) concentration of Cu@Sc-MOF, (B) pH, (C) temperature, (D) reaction time, (E) concentration of H2O2, (F) concentration of Cu@Sc-MOF, (G) concentration of OPD and (H) pH
Material | Km/(mmol·L-1) | 108vmax/(mol·L-1·s-1) | Ref. | ||
---|---|---|---|---|---|
TMB | H2O2 | TMB | H2O2 | ||
HRP | 0.434 | 3.70 | 10.0 | 8.71 | [ |
Cu-BDCPPI | 0.890 | 0.290 | 3.36 | 1.29 | [ |
Cu-MOF | 0.047 7 | 2.65 | 0.312 | 0.126 | [ |
Fe-BTC | 0.261 | 0.033 4 | 7.95 | 2.65 | [ |
Fe3Ni-MOF-NH2 | 0.241 | 0.156 | 1.13 | 1.27 | [ |
Mo-CDs | 0.245 | 3.20 | 0.176 | 4.76 | [ |
Cu@Sc-MOF | 0.040 | 0.086 | 1.74 | 4.69 | This work |
Table 1 Steady-State Kinetics of the Cu@Sc-MOF, HRP and other POD-like mimics
Material | Km/(mmol·L-1) | 108vmax/(mol·L-1·s-1) | Ref. | ||
---|---|---|---|---|---|
TMB | H2O2 | TMB | H2O2 | ||
HRP | 0.434 | 3.70 | 10.0 | 8.71 | [ |
Cu-BDCPPI | 0.890 | 0.290 | 3.36 | 1.29 | [ |
Cu-MOF | 0.047 7 | 2.65 | 0.312 | 0.126 | [ |
Fe-BTC | 0.261 | 0.033 4 | 7.95 | 2.65 | [ |
Fe3Ni-MOF-NH2 | 0.241 | 0.156 | 1.13 | 1.27 | [ |
Mo-CDs | 0.245 | 3.20 | 0.176 | 4.76 | [ |
Cu@Sc-MOF | 0.040 | 0.086 | 1.74 | 4.69 | This work |
Fig.7 (A) The relative absorption of DPBF with different treatments; (B) The relative activity of Cu@Sc-MOF catalytic system with ROS scavengers (PBQ, His and Thiourea); (C) ESR spectra of Cu@Sc-MOF catalytic systems; (D) Fluorescence spectra of TA in different systems
Materials | Method | Linear range/(μmol·L-1) | Limit of detection/(nmol·L-1) | Ref. |
---|---|---|---|---|
Tb/Eu-MOF | Fluorescence | 0~8 | 121.4 | [ |
UiO-66@COF | Fluorescence | 0~10 | 38.0 | [ |
Cy5@UiO-67 | Fluorescence | 0.008~1 | 0.503 | [ |
Thioflavin T | Fluorescence | 0~5 | 24.8 | [ |
CDs/OPD-Cu2+ | Fluorescence | 1.0~100 | 430 | [ |
N-GQDs | Fluorescence | 0~10 | 1.16 | [ |
Cu@Sc-MOF | Colorimetry | 2.5~40 | 600 | This work |
Cu@Sc-MOF | Fluorescence | 1.0~22.5 | 270 | This work |
Table 2 Comparison of sensitivity between Cu@Sc-MOF and other ATP sensors
Materials | Method | Linear range/(μmol·L-1) | Limit of detection/(nmol·L-1) | Ref. |
---|---|---|---|---|
Tb/Eu-MOF | Fluorescence | 0~8 | 121.4 | [ |
UiO-66@COF | Fluorescence | 0~10 | 38.0 | [ |
Cy5@UiO-67 | Fluorescence | 0.008~1 | 0.503 | [ |
Thioflavin T | Fluorescence | 0~5 | 24.8 | [ |
CDs/OPD-Cu2+ | Fluorescence | 1.0~100 | 430 | [ |
N-GQDs | Fluorescence | 0~10 | 1.16 | [ |
Cu@Sc-MOF | Colorimetry | 2.5~40 | 600 | This work |
Cu@Sc-MOF | Fluorescence | 1.0~22.5 | 270 | This work |
Testing mode | Sample/(μmol·L-1) | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=6) |
---|---|---|---|---|---|
Colorimetric mode | 2.83 | 10.00 | 11.81 | 92.0 | 2.9 |
15.00 | 17.53 | 98.3 | 2.7 | ||
35.00 | 38.18 | 101 | 2.3 | ||
Fluorescence mode | 2.91 | 5.00 | 7.38 | 93.2 | 3.4 |
15.00 | 17.54 | 97.9 | 2.8 | ||
20.00 | 21.87 | 95.4 | 1.3 |
Table 3 Detection results of ATP in HepG2 cell lysate
Testing mode | Sample/(μmol·L-1) | Added/(μmol·L-1) | Found/(μmol·L-1) | Recovery/% | RSD/%(n=6) |
---|---|---|---|---|---|
Colorimetric mode | 2.83 | 10.00 | 11.81 | 92.0 | 2.9 |
15.00 | 17.53 | 98.3 | 2.7 | ||
35.00 | 38.18 | 101 | 2.3 | ||
Fluorescence mode | 2.91 | 5.00 | 7.38 | 93.2 | 3.4 |
15.00 | 17.54 | 97.9 | 2.8 | ||
20.00 | 21.87 | 95.4 | 1.3 |
1 | WANG Y, TANG L, LI Z, et al. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells[J]. Nat Protoc,2014, 9(8): 1944-1955. |
2 | ZHANG J, DUAN H, HONG Y, et al. Water-soluble conjugated polyelectrolytes for adenosine triphosphate (ATP) detection[J]. ACS Appl Polym,2023, 5(3): 2213-2222. |
3 | SHEN Y Z, QIAN T, DAN S Y, et al. ATP-activatable photosensitizer enables dual fluorescence imaging and targeted photodynamic therapy of tumor[J]. Anal Chem,2017, 89(24): 13610-13617. |
4 | MO R, JIANG T, DISANTO R, et al. ATP-triggered anticancer drug delivery[J]. Nat Commun, 2014, 5(1): 3364. |
5 | BHATT D P, CHEN X, GEIGER J D, et al. A sensitive HPLC-based method to quantify adenine nucleotides in primary astrocyte cell cultures[J]. J Chromatogr B,2012, 889: 110-115. |
6 | KASHEFI-KHEYRABADI L, MEHRGARDI M A. Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate[J]. Biosens Bioelectron,2012, 37(1): 94-98. |
7 | WU Y, XIAO F, WU Z, et al. Novel aptasensor platform based on ratiometric surface-enhanced Raman spectroscopy[J]. Anal Chem,2017, 89(5): 2852-2858. |
8 | CALABRETTA M M, ÁLVAREZ-DIDUK R, MICHELINI E, et al. Nano-lantern on paper for smartphone-based ATP detection[J]. Biosens Bioelectron,2020, 150: 111902. |
9 | HUANG X, ZHANG S, TANG Y, et al. Advances in metal-organic framework-based nanozymes and their applications[J]. Coord Chem Rev,2021, 449: 214216. |
10 | HOU H, WANG L, GAO Y, et al. Recent advances in metal-organic framework-based nanozymes and their enabled optical biosensors for food safety analysis[J]. Trends Anal Chem,2024, 173: 117602. |
11 | AN M, HE M, LIN C, et al. Recent progress of nanozymes with different spatial dimensions for bioanalysis[J]. Mater Today Nano,2023, 22: 100330. |
12 | PANDA J, TRIPATHY S P, DASH S, et al. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis[J]. Nanoscale,2023, 15(17): 7640-7675. |
13 | LI H, WU H, CHEN J, et al. Highly sensitive colorimetric detection of glutathione in human serum based on iron-copper metal-organic frameworks[J]. Langmuir,2022, 38(50): 15559-15569. |
14 | SU Y, WU H, CHEN J, et al. Novel scandium-MOF nanocrystals as peroxidase-mimicking nanozymes for highly sensitive colorimetric detection of ascorbic acid in human serum[J]. CrystEngComm,2023, 25(23): 3472-3483. |
15 | CHEN W, VÁZQUEZ-GONZÁLEZ M, KOZELL A, et al. Cu2+-modified metal-organic framework nanoparticles: a peroxidase-mimicking nanoenzyme[J]. Small,2018, 14(5): 1703149. |
16 | QU F, LI J, HAN W, et al. Simultaneous detection of adenosine triphosphate and glucose based on the Cu-Fenton reaction[J]. Sensors,2018, 18(7): 2151. |
17 | LEI Y, GAO Y, XIAO Y, et al. Cu2+-functionalized Zr-MOF triggers o-phenylendiamine oxidation for ultrasensitive ratiometric fluorescence detection of nerve agent simulant[J]. Sens Actuators B: Chem,2023, 396: 134553. |
18 | WU Z, CHEN R, PAN S, et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection[J]. Microchem J,2021, 164: 105976. |
19 | JIANG B, DUAN D, GAO L, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes[J]. Nat Protoc,2018, 13(7): 1506-1520. |
20 | LI S, YU L, XIONG L, et al. Ratiometric fluorescence and chromaticity dual-readout assay for β-glucuronidase activity based on luminescent lanthanide metal-organic framework[J]. Sens Actuators B: Chem,2022, 355: 131282. |
21 | KIM M S, LEE J, KIM H S, et al. Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity[J]. Adv Funct Mater,2020, 30(1): 1905410. |
22 | WANG S, WANG Y F, JIAO W N, et al. Imide-functionalized Cu-MOF: biomimetic peroxidase activity and detection of hydrogen peroxide and ascorbic acid[J]. Microporous Mesoporous Mater, 2024, 364: 112885. |
23 | KIRANDEEP, KAUR J, SHARMA I, et al. Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions[J]. J Mater Res Technol,2023, 22: 278-291. |
24 | YUAN A, LU Y, ZHANG X, et al. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing[J]. J Mater Chem B,2020, 8(40): 9295-9303. |
25 | MU Z, GUO J, LI M, et al. A sensitive fluorescence detection strategy for H2O2 and glucose by using aminated Fe-Ni bimetallic MOF as fluorescent nanozyme[J]. Microchim Acta, 2023, 190(3): 81. |
26 | LU W, GUO Y, YUE Y, et al. Smartphone-assisted colorimetric sensing platform based on molybdenum-doped carbon dots nanozyme for visual monitoring of ampicillin[J]. Chem Eng J,2023, 468: 143615. |
27 | WANG Y, XU Y, DONG S, et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species[J]. Nat Commun, 2021, 12(1): 3508. |
28 | WANG X, SONG X, WU J, et al. Mitochondria-targeting two-photon fluorescent probe for sequential recognition of Cu2+ and ATP in neurons and zebrafish[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc,2023, 303: 123260. |
29 | ZHAO J, ZHANG J, YANG W, et al. Rational design of core-shell Ln-MOF hierarchitecture for ratiometric fluorescent sensing and bioimaging for phosphate or ATP[J]. Sens Actuators B: Chem,2023, 389: 133907. |
30 | WANG X, YIN H, YIN X. MOF@COFs with strong multiemission for differentiation and ratiometric fluorescence detection[J]. ACS Appl Mater Interfaces,2020, 12(18): 20973-20981. |
31 | WANG Y, ZHANG D, ZENG Y, et al. Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets[J]. Biosens Bioelectron,2022, 198: 113817. |
32 | FAN Y, DENG X, WANG M, et al. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection[J]. Talanta,2020, 219: 121349. |
33 | WU Z, CHEN R, PAN S, et al. A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection[J]. Microchem J,2021, 164: 105976. |
34 | ZHANG H, WANG J, WEI S, et al. Nitrogen-doped graphene quantum dot-based portable fluorescent sensors for the sensitive detection of Fe3+ and ATP with logic gate operation[J]. J Mater Chem B,2023, 11(26): 6082-6094. |
[1] | Jian-Tian LU, Jin-Hui ZOU, Bo-Lin ZHAO, Yu-Wei ZHANG. Research Progress on the Application of Inorganic Nanoparticle Enzyme in the Field of Analytical Sensing [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 60-86. |
[2] | ZHAO Yue, MENG Xiang-Qin, YAN Xi-Yun, FAN Ke-Long. Nanozyme: A New Type of Biosafety Material [J]. Chinese Journal of Applied Chemistry, 2021, 38(5): 524-545. |
[3] | LI Junrong,SHEN Aiguo,HU Jiming. Research Progress of Nanozymes and Its Application in Analysis [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 1245-1252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||