Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (8): 1094-1108.DOI: 10.19894/j.issn.1000-0518.230108
• Review • Previous Articles Next Articles
Ying-Hua GUO, Shun-Fa ZHOU, Jing LI, Wei-Wei CAI()
Received:
2023-04-17
Accepted:
2023-07-07
Published:
2023-08-01
Online:
2023-08-24
Contact:
Wei-Wei CAI
About author:
caiww@cug.edu.cnSupported by:
CLC Number:
Ying-Hua GUO, Shun-Fa ZHOU, Jing LI, Wei-Wei CAI. Research Progress in Regulation Strategy of Transition Metal Phosphate Catalyst for Electrochemical Water Splitting[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1094-1108.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230108
Catalyst | Electrolyte | Overpotential (η10)/V | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
Fe0.72Co0.42PO4/Ni* | 1.0 mol/L KOH | 77 | 80.7 | [ |
δ-FeOOH NSs/NF | 1.0 mol/L KOH | 265 | 36 | [ |
CoPO/NF* | 1.0 mol/L KOH | 116 | 65.6 | [ |
S-doped Co-Fe-Pi | 1.0 mol/L KOH | 273 | 40 | [ |
Gly-NCP | 1.0 mol/L KOH 1.0 mol/L KOH+0.5 mol/L NaCl | 265 252 | 57 39 | [ |
NiFeP/Pi | 0.1 mol/L KOH | 210 | 39 | [ |
α-ZrP | 0.1 mol/L KOH | 450 | 53.4 | [ |
HEPi | 1.0 mol/L KOH | 270 | 74 | [ |
Ni5P4@ Ni2+δ O δ (OH)2-δ* | 1.0 mol/L KOH Seawater 0.5 mol/L H2SO4 | 87 144 66 | 69 108 33 | [ |
Nd2O3∶NdPO4* | 0.5 mol/L H2SO4 | 134 | 55.6 | [ |
CoFeP/NF | 1.0 mol/L KOH | 253 | 36 | [ |
CoFePi | 1.0 mol/L KOH | 225 | 34 | [ |
(Fe x Co y )P2O7@N-C | 1.0 mol/L KOH | 341 | 34.9 | [ |
FMZP4* | 1.0 mol/L KOH | 53 | 53.2 | [ |
RuFeP-NCs/CNF* | 0.5 mol/L H2SO4 1.0 mol/L KOH | 65.8 16.0 | 50 90.24 | [ |
NiCo-2.0 | 1.0 mol/L KOH | 320 | 84 | [ |
Co7Fe3-P/C | 1.0 mol/L KOH | 260 | 37.8 | [ |
Ni-Co-TEP-600 | 1.0 mol/L KOH | 310 | 68 | [ |
CoPiNF-800 | 1.0 mol/L KOH | 222 (η100) | 62 | [ |
NiCoPO@NC/P-NF-e | 1.0 mol/L KOH | 221 | 87.8 | [ |
FPO3/NF | 1.0 mol/L KOH | 309 | 96.9 | [ |
A-Ni2P/Cu3P | 1.0 mol/L KOH | 262 | 78.1 | [ |
NiCoPi/Ni-P/NiCoPi | 1.0 mol/L KOH | 234 | 87 | [ |
Ni∶Pi-Fe/NF | 1.0 mol/L KOH | 220 | 37 | [ |
Co-Zn-P/NiFoam | 1.0 mol/L KOH | 307 | 56.6 | [ |
NiFeO x H y /NF-0H | 1.0 mol/L KOH | 205 (η50) | 30 | [ |
Ni3Fe-LDHs@CoP x /NF | 1 mol/L phosphate buffer+0.5 mol/L NaCl | 370 | 76 | [ |
NiCoFe phosphate NSs/NF | 1.0 mol/L KOH | 240 | 58 | [ |
Ni(PO3)2-CoP4/CoMoO4/NF* | 1.0 mol/L KOH | 79 (η100) | 27.75 | [ |
De-LCoFeP/rGO | 0.1 mol/L KOH | 270 | 57.5 | [ |
NiMo-Fe-P | 1.0 mol/L KOH | 215.2 | 37.52 | [ |
Table 1 Latest research results of transition metal phosphate electrolytic water catalyst
Catalyst | Electrolyte | Overpotential (η10)/V | Tafel slope/(mV·dec-1) | Ref. |
---|---|---|---|---|
Fe0.72Co0.42PO4/Ni* | 1.0 mol/L KOH | 77 | 80.7 | [ |
δ-FeOOH NSs/NF | 1.0 mol/L KOH | 265 | 36 | [ |
CoPO/NF* | 1.0 mol/L KOH | 116 | 65.6 | [ |
S-doped Co-Fe-Pi | 1.0 mol/L KOH | 273 | 40 | [ |
Gly-NCP | 1.0 mol/L KOH 1.0 mol/L KOH+0.5 mol/L NaCl | 265 252 | 57 39 | [ |
NiFeP/Pi | 0.1 mol/L KOH | 210 | 39 | [ |
α-ZrP | 0.1 mol/L KOH | 450 | 53.4 | [ |
HEPi | 1.0 mol/L KOH | 270 | 74 | [ |
Ni5P4@ Ni2+δ O δ (OH)2-δ* | 1.0 mol/L KOH Seawater 0.5 mol/L H2SO4 | 87 144 66 | 69 108 33 | [ |
Nd2O3∶NdPO4* | 0.5 mol/L H2SO4 | 134 | 55.6 | [ |
CoFeP/NF | 1.0 mol/L KOH | 253 | 36 | [ |
CoFePi | 1.0 mol/L KOH | 225 | 34 | [ |
(Fe x Co y )P2O7@N-C | 1.0 mol/L KOH | 341 | 34.9 | [ |
FMZP4* | 1.0 mol/L KOH | 53 | 53.2 | [ |
RuFeP-NCs/CNF* | 0.5 mol/L H2SO4 1.0 mol/L KOH | 65.8 16.0 | 50 90.24 | [ |
NiCo-2.0 | 1.0 mol/L KOH | 320 | 84 | [ |
Co7Fe3-P/C | 1.0 mol/L KOH | 260 | 37.8 | [ |
Ni-Co-TEP-600 | 1.0 mol/L KOH | 310 | 68 | [ |
CoPiNF-800 | 1.0 mol/L KOH | 222 (η100) | 62 | [ |
NiCoPO@NC/P-NF-e | 1.0 mol/L KOH | 221 | 87.8 | [ |
FPO3/NF | 1.0 mol/L KOH | 309 | 96.9 | [ |
A-Ni2P/Cu3P | 1.0 mol/L KOH | 262 | 78.1 | [ |
NiCoPi/Ni-P/NiCoPi | 1.0 mol/L KOH | 234 | 87 | [ |
Ni∶Pi-Fe/NF | 1.0 mol/L KOH | 220 | 37 | [ |
Co-Zn-P/NiFoam | 1.0 mol/L KOH | 307 | 56.6 | [ |
NiFeO x H y /NF-0H | 1.0 mol/L KOH | 205 (η50) | 30 | [ |
Ni3Fe-LDHs@CoP x /NF | 1 mol/L phosphate buffer+0.5 mol/L NaCl | 370 | 76 | [ |
NiCoFe phosphate NSs/NF | 1.0 mol/L KOH | 240 | 58 | [ |
Ni(PO3)2-CoP4/CoMoO4/NF* | 1.0 mol/L KOH | 79 (η100) | 27.75 | [ |
De-LCoFeP/rGO | 0.1 mol/L KOH | 270 | 57.5 | [ |
NiMo-Fe-P | 1.0 mol/L KOH | 215.2 | 37.52 | [ |
Fig.2 Synthesis and microscopic characterization of NCP, EG-NCP and Gly-NCP materials. (a) Schematic diagram of the synthesis process of Gly-NCP nanosheets. (b) XRD pattern of NCP, EG-NCP and Gly-NCP sample. (c) SEM images of NCP, (d) EG-NCP and (e) Gly-NCP. (f) TEM images obtained from yellow rectangular areas, (g) HRTEM images and SAED diagrams (illustrations), and (h) EDS element diagrams of Gly-NCP nanosheets[57]
Fig.5 Schematic diagram of Ni2P(O)/Fe2P(O) interface with active surface oxidation recombination (doped with hydroxide and phosphate) and durable conductive phosphide[115]
1 | SHRESTHA A, MUSTAFA A A, HTIKE M M, et al. Evolution of energy mix in emerging countries: modern renewable energy, traditional renewable energy, and non-renewable energy[J]. Renew Energy, 2022, 199: 419-432. |
2 | SCHEFFE J R, HAUSSENER S, PATZKE G R. Solar hydrogen production[J]. Energy Technol, 2022, 10(1): 2101021. |
3 | DOS SANTOS K G, ECKERT C T, DE ROSSI E, et al. Hydrogen production in the electrolysis of water in Brazil, a review[J]. Renew Sustainable Energy Rev, 2017, 68: 563-571. |
4 | ZHANG Q, JIAO S, WANG B, et al. Accelerate the alkaline hydrogen evolution reaction of the heterostructural Ni2P@Ni(OH)2/NF by dispersing a trifle of Ru on the surface[J]. Int J Hydrogen Energy, 2021, 46(52): 26329-26339. |
5 | SORSA O, BACKHOUSE R, SAXELIN S, et al. Optimization and aging of Pt nanowires supported on single-walled carbon nanotubes as a cathode catalyst in polymer electrolyte membrane water electrolyser[J]. Int J Hydrogen Energy, 2020, 45(38): 19121-19132. |
6 | HUANG J, JIANG Y. Tailoring resource-efficient catalysts for sustainable energy and chemical processes[J]. ACS Sustainable Chem Eng, 2019, 7(7): 6423. |
7 | HERAVI M M, MOHAMMADI P. Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: an overview[J]. Mol Diversity, 2022, 26(1): 569-587. |
8 | CHEN J, LI H, CHEN S, et al. Co-Fe-Cr(oxy) hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv Energy Mater, 2021, 11(11): 2003412. |
9 | JOO J, KIM T, LEE J, et al. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv Mater, 2019, 31(14): e1806682. |
10 | DING X, YANG T, WEI W, et al. An in situ grown lanthanum sulfide/molybdenum sulfide hybrid catalyst for electrochemical hydrogen evolution[J]. Catal Sci Technol, 2020, 10(10): 3247-3254. |
11 | MOYER M M, KARAKAYA C, KEE R J, et al. In situ formation of metal carbide catalysts[J]. ChemCatChem, 2017, 9(16): 3090-3101. |
12 | MA Y, GUAN G, HAO X, et al. Molybdenum carbide as alternative catalyst for hydrogen production-a review[J]. Renew Sustainable Energy Rev, 2017, 75: 1101-1129. |
13 | WU Z, GAN Q, LI X, et al. Elucidating surface restructuring-induced catalytic reactivity of cobalt phosphide nanoparticles under electrochemical conditions[J]. J Phys Chem C, 2018, 122(5): 2848-2853. |
14 | ANANTHARAJ S, REDDY P N, KUNDU S. Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst[J]. Inorg Chem, 2017, 56(3): 1742-1756. |
15 | LI X, XIAO X, LI Q, et al. Metal (M=Co, Ni) phosphate based materials for high-performance supercapacitors[J]. Inorg Chem Front, 2018, 5(1): 11-28. |
16 | LI C, MEI X, LAM F L Y, et al. Amorphous iron and cobalt based phosphate nanosheets supported on nickel foam as superior catalysts for hydrogen evolution reaction[J]. ACS Appl Energy Mater, 2018, 1(12): 6764-6768. |
17 | GUI L, MIAO X, LEI C, et al. Co3+-rich Na1.95CoP2O7 phosphates as efficient bifunctional catalysts for oxygen evolution and reduction reactions in alkaline solution[J]. Chemistry, 2019, 25(47): 11007-11014. |
18 | ESSWEIN A J, SURENDRANATH Y, REECE S Y, et al. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters[J]. Energy Environ Sci, 2011, 4(2): 499-504. |
19 | KING H J, BONKE S A, CHANG S L Y, et al. Engineering disorder into heterogenite-like cobalt oxides by phosphate doping: implications for the design of water-oxidation catalysts[J]. ChemCatChem, 2017, 9(3): 511-521. |
20 | GUO R, LAI X, HUANG J, et al. Phosphate-based electrocatalysts for water splitting: recent progress[J]. ChemElectroChem, 2018, 5(24): 3822-3834. |
21 | ZHAO H, YUAN Z Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions[J]. ChemSusChem, 2021, 14(1): 130-149. |
22 | ZHANG L, YE F, WU Z, et al. Carbonate-hydroxide induced metal-organic framework transformation strategy for honeycomb-like NiCoP nanoplates to drive enhanced pH-universal hydrogen evolution[J]. Small Methods, 2022, 6(8): e2200515. |
23 | DUAN R, LI Y, WANG S, et al. Fast and deep reconstruction of coprecipitated Fe phosphates on nickel foams for an alkaline oxygen evolution reaction[J]. J Phys Chem Lett, 2022, 13(6): 1446-1452. |
24 | LIU S, ZAHARIEVA I, D'AMARIO L, et al. Electrocatalytic water oxidation at neutral pH-deciphering the rate constraints for an amorphous cobalt-phosphate catalyst system[J]. Adv Energy Mater, 2022, 12(46): 2202914. |
25 | NAITO T, SHINAGAWA T, NISHIMOTO T, et al. Water electrolysis in saturated phosphate buffer at neutral pH[J]. ChemSusChem, 2020, 13(22): 5921-5933. |
26 | LIU H, CAO S, ZHANG J, et al. Facile control of surface reconstruction with Co2+ or Co3+-rich (oxy)hydroxide surface on ZnCo phosphate for large-current-density hydrogen evolution in alkali[J]. Mater Today Phys, 2021, 20: 100448. |
27 | CHEN J, JAYABAL S, GENG D, et al. Stable water oxidation catalysts based on in-situ electrochemical transition of nickel phosphate[J]. Catal Lett, 2021, 152(8): 2333-2341. |
28 | ZHAO H, YUAN Z Y. Insights into transition metal phosphate materials for efficient electrocatalysis[J]. ChemCatChem, 2020, 12(15): 3797-810. |
29 | ZHOU Q, LIAO L, ZHOU H, et al. Innovative strategies in design of transition metal-based catalysts for large-current-density alkaline water/seawater electrolysis[J]. Mater Today Phys, 2022, 26: 100727. |
30 | ZHOU B, GAO R, ZOU J J, et al. Surface design strategy of catalysts for water electrolysis[J]. Small, 2022, 18(27): e2202336. |
31 | CHEN L, REN J T, YUAN Z Y. Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting[J]. Green Chem, 2022, 24(2): 713-747. |
32 | CHOI S, PARK Y, YANG H, et al. Vacancy-engineered catalysts for water electrolysis[J]. CrystEngComm, 2020, 22(9): 1500-1513. |
33 | ZHANG R, PEARCE P E, DUAN Y, et al. Importance of water structure and catalyst-electrolyte interface on the design of water splitting catalysts[J]. Chem Mater, 2019, 31(20): 8248-8259. |
34 | CHINNADURAI D, NALLAL M, KIM H J, et al. Mn3+ active surface site enriched manganese phosphate nano-polyhedrons for enhanced bifunctional oxygen electrocatalyst[J]. ChemCatChem, 2020, 12(8): 2348-2355. |
35 | GOND R, SADA K, SENTHILKUMAR B, et al. Bifunctional electrocatalytic behavior of sodium cobalt phosphates in alkaline solution[J]. ChemElectroChem, 2018, 5(1): 153-158. |
36 | ZHANG R, VAN STRAATEN G, DI PALMA V, et al. Electrochemical activation of atomic layer-deposited cobalt phosphate electrocatalysts for water oxidation[J]. ACS Catal, 2021, 11(5): 2774-2785. |
37 | FANG Z, PENG L, QIAN Y, et al. Dual tuning of Ni-Co-A (A=P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution[J]. J Am Chem Soc, 2018, 140(15): 5241-5247. |
38 | WU R, XIAO B, GAO Q, et al. Inside back cover: a janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting[J]. Angew Chem Int Ed, 2018, 57(47): 15607. |
39 | LUO F, ZHANG Q, YU X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angew Chem, 2018, 57(45): 14862-14867. |
40 | LI L, LU X, CHEN W, et al. A new strategy to hydrothermally synthesize olivine phosphates[J]. Chem Commun, 2019, 55(80): 12092-12095. |
41 | VECSTAUDZA J, LOCS J. Novel preparation route of stable amorphous calcium phosphate nanoparticles with high specific surface area[J]. J Alloys Compd, 2017, 700: 215-222. |
42 | CAO Y, CHEN Z, YE F, et al. One-step synthesis of amorphous NiCoP nanoparticles by electrodeposition as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. J Alloys Compd, 2022, 896: 163103. |
43 | CHINNADURAI D, RAJENDIRAN R, LI O L, et al. Mn-Co bimetallic phosphate on electrodeposited PANI nanowires with composition modulated structural morphology for efficient electrocatalytic water splitting[J]. Appl Catal B, 2021, 292: 120202. |
44 | KIM J, KIM H, MYUNG S T, et al. Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries[J]. J Power Sources, 2018, 374: 55-60. |
45 | YIN D, JIN Z, LIU M, et al. Microwave-assisted synthesis of the cobalt-iron phosphates nanosheets as an efficient electrocatalyst for water oxidation[J]. Electrochim Acta, 2018, 260: 420-429. |
46 | LIU Y, YANG D, LIU Z, et al. Nickel foam supported cobalt phosphate electrocatalyst for alkaline oxygen evolution reaction[J]. J Power Sources, 2020, 461: 228165. |
47 | WANG Z, ZHANG X, WU X, et al. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction[J]. Chem Eng J, 2022, 437: 135375. |
48 | GUO T, ZHANG L, YUN S, et al. One-step synthesis of bimetallic Ni-Fe phosphates and their highly electrocatalytic performance for water oxidation[J]. Mater Res Bull, 2019, 114: 80-84. |
49 | WANG X, FENG Z, HUANG J, et al. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127: 149-157. |
50 | WEI S, YAO J, SHI B. 1D highly porous Li3V2(PO4)3/C nanofibers as superior high-rate and ultralong cycle-life cathode material for electrochemical energy storage[J]. Solid State Ionics, 2017, 305: 36-42. |
51 | YUAN C Z, JIANG Y F, WANG Z, et al. Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction[J]. J Mater Chem A, 2016, 4(21): 8155-8160. |
52 | KIM H, PARK J, PARK I, et al. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst[J]. Nat Commun, 2015, 6: 8253. |
53 | CHENG Q, ZHAO X, YANG G, et al. Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries[J]. Energy Storage Mater, 2021, 41: 842-882. |
54 | JIANG S, ZHU L, YANG Z, et al. Enhanced electrocatalytic performance of FeNiCoP amorphous alloys as oxygen-evolving catalysts for electrolytic water splitting application[J]. Electrochim Acta, 2021, 368: 137618. |
55 | GUO X, LI N, CHENG Y, et al. General synthesis of nitrogen-doped metal (M=Co2+, Mn2+, Ni2+, or Cu2+) phosphates[J]. Chem Eng J, 2021, 411: 128544. |
56 | YUE Q, GAO T, WU Y, et al. S-doped Co-Fe-Pi nanosheets as highly efficient oxygen evolution electrocatalysts in alkaline media[J]. Electrochim Acta, 2020, 362: 137123. |
57 | SONG Z, WANG K C, SUN Q, et al. High-performance ammonium cobalt phosphate nanosheet electrocatalyst for alkaline saline water oxidation[J]. Adv Sci, 2021, 8(14): 2100498. |
58 | THAKUR N, KUMAR M, MANDAL D, et al. Nickel iron phosphide/phosphate as an oxygen bifunctional electrocatalyst for high-power-density rechargeable Zn-air batteries[J]. ACS Appl Mater Interfaces, 2021,19(44):52487-52497. |
59 | RAMOS-GARC S M V, SANCHEZ J, DEL TORO-PEDROSA D E, et al. Transition metal-modified exfoliated zirconium phosphate as an electrocatalyst for the oxygen evolution reaction[J]. ACS Appl Energ Mater, 2019, 2(5): 3561-3567. |
60 | QIAO H, WANG X, DONG Q, et al. A high-entropy phosphate catalyst for oxygen evolution reaction[J]. Nano Energy, 2021, 86: 106029. |
61 | HUANG Y, HU L, LIU R, et al. Nitrogen treatment generates tunable nanohybridization of Ni5P4 nanosheets with nickel hydr(oxy)oxides for efficient hydrogen production in alkaline, seawater and acidic media[J]. Appl Catal B: Environ, 2019, 251: 181-194. |
62 | MAJHI K C, YADAV M. Neodymium oxide doped neodymium phosphate as efficient electrocatalyst towards hydrogen evolution reaction in acidic medium[J]. J Environ Chem Eng, 2022, 10(3): 107416. |
63 | XIONG D, LU C, CHEN C, et al. CoFeP nanocube-arrays based on Prussian blue analogues for accelerated oxygen evolution electrocatalysis[J]. J Power Sources, 2022, 520: 230884. |
64 | ZOU Y, LIU Z, LIU R, et al. Disordered CoFePi nanosheets with rich vacancies as oxygen evolving electrocatalysts: insight into the local atomic environment[J]. J Power Sources, 2019, 427: 215-222. |
65 | ZHAO D, SHAO Q, ZHANG Y, et al. N-doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting[J]. Nanoscale, 2018, 10(48): 22787-22791. |
66 | HUANG L, YAO R, WANG X, et al. In situ phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting[J]. Energy Environ Sci, 2022, 15(6): 2425-2434. |
67 | YANG B, XU J, BIN D, et al. Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction[J]. Appl Catal B: Environ, 2021, 283: 119583. |
68 | SEPTIANI N L W, KANETI Y V, FATHONI K B, et al. Tailorable nanoarchitecturing of bimetallic nickel-cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution[J]. J Mater Chem A, 2020, 8(6): 3035-3047. |
69 | PENG Z, HU L, SHI J, et al. Gap channel carbon layer coated bimetallic CoFe phosphate as a bifunctional electrocatalyst for overall water splitting[J]. J Power Sources, 2022, 538: 231571. |
70 | SEPTIANI N L W, KANETI Y V, FATHONI K B, et al. Self-assembly of two-dimensional bimetallic nickel-cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction[J]. Chem Mater, 2020, 32(16): 7005-7018. |
71 | ZHU C, YU Z, LIN T, et al. Structural design of cobalt phosphate on nickel foam for electrocatalytic oxygen evolution[J]. Nanotechnology, 2021, 32(30): 305702. |
72 | GAO H, WANG Y, ZHOU S, et al. Nickel-cobalt phosphate nanoparticles wrapped in nitrogen-doped carbon loading on partially phosphatized foamed nickel as efficient electrocatalyst for water splitting[J]. Chem Eng J, 2021, 426: 130854. |
73 | WANG D, XU Y, GUO X, et al. Nickel foam as conductive substrate enhanced low-crystallinity two-dimensional iron hydrogen phosphate for oxygen evolution reaction[J]. J Alloys Compd, 2021, 870: 159472. |
74 | WAN H, MA R, LIU X, et al. Rare cobalt-based phosphate nanoribbons with unique 5-coordination for electrocatalytic water oxidation[J]. ACS Energy Lett, 2018, 3(6): 1254-1260. |
75 | LI C, MEI X, LAM F L Y, et al. Hybridizing amorphous nickel cobalt phosphate and nickel phosphide as an efficient bifunctional nanocatalyst towards overall water splitting[J]. Catal Today, 2020, 358: 215-220. |
76 | LI Y, ZHAO C. Iron-doped nickel phosphate as synergistic electrocatalyst for water oxidation[J]. Chem Mater, 2016, 28(16): 5659-5666. |
77 | QIAN L, MIAO Y. Nanosheet organized flower-like Co/Zn phosphate on nickel foam for efficient water splitting in both acid and basic solutions[J]. Polyhedron, 2019, 160: 213-218. |
78 | DUAN R, LI Y J, WANG S, et al. Effects of phosphate precursors on morphology and oxygen evolution reaction activity of NiFe (oxy)hydroxide on nickel foams[J]. T Nonferr Metal Soc, 2022, 32(12): 4050-4061. |
79 | LI T, ZHAO X, GETAYE SENDEKU M, et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting[J]. Chem Eng J, 2023, 460: 141413. |
80 | SIAL M, LIN H, WANG X. Microporous 2D NiCoFe phosphate nanosheets supported on Ni foam for efficient overall water splitting in alkaline media[J]. Nanoscale, 2018, 10(27): 12975-12980. |
81 | YANG M, ZHANG S, WANG T, et al. Multiple interface Ni(PO3)2-CoP4/CoMoO4 nanorods for highly efficient hydrogen evolution in alkaline water/seawater electrolysis[J]. ACS Sustainable Chem Eng, 2022, 10(37): 12423-12432. |
82 | LIU Y, WANG H, LIN D, et al. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts[J]. Energy Environ Sci, 2015, 8(6): 1719-1724. |
83 | ZHOU X, YANG T, ZI Y, et al. Self-supporting NiMo-Fe-P nanowire arrays as bifunctional catalysts for efficient overall water splitting[J]. Dalton trans, 2023, 52(11): 3508-3516. |
84 | LIU H, HUANG R, CHEN W, et al. Porous 2D cobalt-nickel phosphide triangular nanowall architecture assembled by 3D microsphere for enhanced overall water splitting[J]. Appl Surf Sci, 2021, 569: 150762. |
85 | AI G, MO R, LI H, et al. Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting[J]. Nanoscale, 2015, 7(15): 6722-6728. |
86 | LI X, ZHA Q, NI Y. Ni-Fe phosphate/Ni foam electrode: facile hydrothermal synthesis and ultralong oxygen evolution reaction durability[J]. ACS Sustainable Chem Eng, 2019, 7(22): 18332-18340. |
87 | LIU Z, HE H, LIU Y, et al. Soft-template derived Ni/Mo2C hetero-sheet arrays for large current density hydrogen evolution reaction[J]. J Colloid Interface Sci, 2023, 635: 23-31. |
88 | ZHOU S, LIU Y, LI J, et al. Surface-neutralization engineered NiCo-LDH/phosphate hetero-sheets toward robust oxygen evolution reaction[J]. Green Energy Environ, 2022. doi.org/10.1016/j.gee.2022.12.003. |
89 | ZHANG D, HU L L, SUN Y G, et al. Construction of uniform transition-metal phosphate nanoshells and their potential for improving Li-ion battery performance[J]. J Mater Chem A, 2018, 6(19): 8992-8999. |
90 | ZHANG P, HE M, LI F, et al. Engineering bimetallic capture sites on hierarchically porous carbon electrode for efficient phosphate electrosorption: multiple active centers and excellent electrochemical properties[J]. J Mater Chem A, 2023, 11(2): 579-588. |
91 | BAU J A, TAKANABE K. Ultrathin microporous SiO2 membranes photodeposited on hydrogen evolving catalysts enabling overall water splitting[J]. ACS Catal, 2017, 7(11): 7931-7940. |
92 | AI J, JIN R, LIU Z, et al. Three-dimensionally ordered macroporous FeP self-supported structure for high-efficiency hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2019, 44(12): 5854-5862. |
93 | HE M, ZHANG P, HUO S, et al. Remarkable phosphate electrosorption/desorption by bimetallic MOF-derived hierarchically porous carbon electrode: in-situ creation of multiple active centers and boosting electrochemical activities[J]. Chem Eng J, 2022, 446: 137396. |
94 | HUANG Z Q, LU W X, WANG B, et al. A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation[J]. Catal Sci Technol, 2019, 9(17): 4718-4724. |
95 | AL-SHARIF M S, ARUNACHALAM P, ABITI T, et al. Mesoporous cobalt phosphate electrocatalyst prepared using liquid crystal template for methanol oxidation reaction in alkaline solution[J]. Arab J Chem, 2020, 13(1): 2873-2882. |
96 | CHE Q, XIE X, MA Q, et al. In-situ transformation of Co(OH)2 into NH4CoPO4·H2O on Co foil: 3D self-supported electrocatalyst with asymmetric local atomic and electronic structure for enhanced oxygen evolution reaction[J]. J Energy Chem, 2020, 51: 167-174. |
97 | WANG Y, ZHANG C, DU X, et al. Transition metal atom M (M=Fe, Co, Cu, Cr) doping and oxygen vacancy modulated M-Ni5P4-NiMOH nanosheets as multifunctional electrocatalysts for efficient overall water splitting and urea electrolysis reaction[J]. Dalton Trans, 2022, 51(39): 14937-14944. |
98 | XIANG C, JI Q, ZHANG G, et al. In situ creation of oxygen vacancies in porous bimetallic La/Zr sorbent for aqueous phosphate: hierarchical pores control mass transport and vacancy sites determine interaction[J]. Environ Sci Technol, 2020, 54(1): 437-445. |
99 | XIONG J, LI J, SHI J, et al. Metallic 1T-MoS2 nanosheets in-situ entrenched on N,P,S-codoped hierarchical carbon microflower as an efficient and robust electro-catalyst for hydrogen evolution[J]. Appl Catal B: Environ, 2019, 243: 614-620. |
100 | WANG J, TRAN D T, CHANG K, et al. Bifunctional catalyst derived from sulfur-doped VMoOx nanolayer shelled Co nanosheets for efficient water splitting[J]. ACS Appl Mater Interfaces, 2021, 13(36): 42944-42956. |
101 | SONG L, FAN H, FAN X, et al. A simultaneous phosphorization and carbonization strategy to synthesize a defective Co2P/doped-CNTs composite for bifunctional oxygen electrocatalysis[J]. Chem Eng J, 2022, 435: 134612. |
102 | LIU Z, XUE S, ZHOU S, et al. Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis[J]. J Catal, 2022, 405: 606-613. |
103 | TROTOCHAUD L, YOUNG S L, RANNEY J K, et al. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation[J]. J Am Chem Soc, 2014, 136(18): 6744-6753. |
104 | XIONG J, LI J, SHI J, et al. In situ engineering of double-phase interface in Mo/Mo2C heteronanosheets for boosted hydrogen evolution reaction[J]. ACS Energy Lett, 2018, 3(2): 341-348. |
105 | KHALATE S A, KADAM S A, MA Y R, et al. Cobalt doped iron phosphate thin film: an effective catalyst for electrochemical water splitting[J]. J Alloys Compd, 2021, 885: 160914. |
106 | LIU Z, LIU Y, HE H, et al. Valence regulation of Ru/Mo2C heterojunction for efficient acidic overall water splitting[J]. Electrochim Acta, 2023, 443: 141920. |
107 | SUN S, LIU Y, XU G, et al. Controllably constructed carbide/oxide heterointerfaces of molybdenum for efficient hydrogen evolution[J]. Fuel, 2023, 335: 127084. |
108 | CHENG X, PAN Z, LEI C, et al. A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities[J]. J Mater Chem A, 2019, 7(3): 965-971. |
109 | ZENG F, LI J, HOFMANN J P, et al. Phosphate-assisted efficient oxygen evolution over finely dispersed cobalt particles supported on graphene[J]. Catal Sci Technol, 2021, 11(3): 1039-1048. |
110 | ZHAO H, WENG C C, REN J T, et al. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts[J]. Chin J Catal, 2020, 41(2): 259-267. |
111 | MIRGHNI A A, OYEDOTUN K O, FASAKIN O, et al. High-performance bimetallic Ni-Mn phosphate hybridized with 3-D graphene foam for novel hybrid supercapacitors[J]. J Energy Storage, 2020, 31: 101584. |
112 | ZHANG L, WANG Z, XU X, et al. Insights into the phosphate adsorption behavior onto 3D self-assembled cellulose/graphene hybrid nanomaterials embedded with bimetallic hydroxides[J]. Sci Total Environ, 2019, 653: 897-907. |
113 | MAHMOUD B A, MIRGHNI A A, FASAKIN O, et al. Bullet-like microstructured nickel ammonium phosphate/graphene foam composite as positive electrode for asymmetric supercapacitors[J]. RSC Adv, 2020, 10(28): 16349-16360. |
114 | LI D, BAYDOUN H, VERANI C N, et al. Efficient water oxidation using CoMnP nanoparticles[J]. J Am Chem Soc, 2016, 138(12): 4006-4009. |
115 | LIU P F, LI X, YANG S, et al. Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis[J]. ACS Energy Lett, 2017, 2(10): 2257-2263. |
116 | ZHOU S, WANG J, LI J, et al. Surface-growing organophosphorus layer on layered double hydroxides enables boosted and durable electrochemical freshwater/seawater oxidatio[J]. Appl Catal B: Environ, 2023, 332: 122749. |
117 | JIA H, STARK J, ZHOU L Q, et al. Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation[J]. RSC Adv, 2012, 2(29): 10874. |
118 | GE M, ZHANG X, XIA S, et al. Uniform formation of amorphous cobalt phosphate on carbon nanotubes for hydrogen evolution reaction†[J]. Chin J Chem, 2021, 39(8): 2113-2118. |
119 | EOM C J, SUNTIVICH J. In situ stimulated raman spectroscopy reveals the phosphate network in the amorphous cobalt oxide catalyst and its role in the catalyst formation[J]. J Phys Chem C, 2019, 123(48): 29284-29290. |
120 | YANG L, GUO Z, HUANG J, et al. Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: outer and inner structural design for superior water splitting[J]. Adv Mater, 2017, 29(46): 1704574. |
121 | OSTOVARI MOGHADDAM A, TROFIMOV E A. Toward expanding the realm of high entropy materials to platinum group metals: a review[J]. J Alloys Compd, 2021, 851: 156838. |
122 | XIE L, ZHANG R, CUI L, et al. High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray[J]. Angew Chem, 2017, 56(4): 1064-1068. |
123 | QI J, XIE J, WEI Z, et al. Modulation of crystal water in cobalt phosphate for promoted water oxidation[J]. Chem Commun, 2020, 56(33): 4575-4578. |
[1] | Er-Gui LUO, Tao TANG, Yi WANG, Jun-Ming ZHANG, Yu-Hong CHANG, Tian-Jun HU, Jian-Feng JIA. Progress on Tuning the Geometric and Electronic Structure of Precious Metal Catalysts for Hydrogen Peroxide Production via Two-Electron Oxygen Reduction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1063-1076. |
[2] | Yi-Ning DONG, He LI, Xue GONG, Ce HAN, Ping SONG, Wei-Lin XU. Research Progress of Non-Pt-Based Catalysts in Cathode Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1077-1093. |
[3] | Yin-Nan QIAN, Chuan SHI, Wei ZHANG, Zhao-Yan LUO. Research Progress of Noble Metal Electrocatalysts for Oxygen Evolution Reaction in Acidic Environment [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1126-1139. |
[4] | Wei WANG, Jia-Yuan LI. Research Progress of Cobalt Phosphide Heterojunction Catalysts for Electrolytic Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1175-1186. |
[5] | Rui-Xue ZHENG, Qing-Lei MENG, Li ZHANG, Chang-Peng LIU, Wei XING, Mei-Ling XIAO. Hierarchically Porous Fe-N-C Catalysts for Efficient Electrocatalytic Oxygen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1187-1194. |
[6] | Jia-Xin LIU, Jia-He FAN, Shu-Hui LI, Liang MA. Synthesis of Rh@Pt/C Concave Cubic Core-Shell Catalyst and Its Ethanol Electro-Oxidation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1195-1204. |
[7] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[8] | Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG, Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI. Research Progress of Bulk Metal Oxides for Non-oxidative Propane Dehydrogenation [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 789-805. |
[9] | Yuan-Hua ZHANG, Sheng-Ran LI, Xi-Fei YU. Fluoride-Functionalized Choline Phosphate Liposomes for Oral Insulin Administration [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 730-742. |
[10] | Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340. |
[11] | Lu-Fei WANG, Meng-Meng ZHEN, Bo-Xiong SHEN. Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 188-209. |
[12] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[13] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[14] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[15] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||