Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (10): 1475-1487.DOI: 10.19894/j.issn.1000-0518.220032
• Review • Next Articles
Lin-Jie GUO1,2,3, Hong-Zhen PENG2, Jiang LI1,2,3, Li-Hua WANG1,2,3, Ying ZHU1,2,3()
Received:
2022-02-11
Accepted:
2022-04-14
Published:
2022-10-01
Online:
2022-10-05
Contact:
Ying ZHU
About author:
zhuying@zjlab.org.cnSupported by:
CLC Number:
Lin-Jie GUO, Hong-Zhen PENG, Jiang LI, Li-Hua WANG, Ying ZHU. Advances in Receptor‑ligand Interactions on Cell Surface Based on Framework Nucleic Acids[J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1475-1487.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.220032
Fig.1 Non-covalent and covalent conjugation between DNA and ligands(a) The cocaine-esterase CocE non-covalently linked to the specified site of DNA origami through streptavidin and biotin interactions[19]; (b) EGFP protein with Histag non-covalently linked to NTA-DNA in the presence of Ni2+[22]; (c) SPDP, SMCC, Snap-tag and Halo-tag mediated covalent conjugation[16]
Fig.2 Multivalent interactions between receptor and ligand based on framework nucleic acids(a) Multivalent aptamers conjugated to self-assembled DNA “nanocentipede”[20]; (b) EGF and A20FMDV2 peptides modified on triangular DNA origami for the study of receptor ligand interactions in cancer cell proliferation[42]; (c) DNA tetrahedron with multivalent aptamers on the microfluidic chip interface for circulating tumor cells capture and release[49]
Fig.3 Distance-dependent interactions between receptor and ligand based on framework nucleic acids(a) Design of artificial antigen epitopes with different distances on DNA triangular origami and single-molecule imaging of antigen-antibody interactions under high-speed atomic force microscopy[61]; (b) eOD-GT8 antigens attached to icosahedral and six-helix DNA origami surfaces in varying numbers and intervals[62]; (c) Atomic force microscopy imaging of caspase-9 monomer at different distances in two vertical directions on square DNA origami[63]
Fig.4 Topologically conformation dependent interactions between receptor and ligand based on framework nucleic acids(a) Topological rearrangement of aptamers based on DNA tetrahedrons and their binding to cell membrane receptors[67]; (b) Star-shaped DNA structure carrying 10 ED3 aptamers based on surface trivalent and pentavalent envelope protein domain Ⅲ (ED3) of dengue virus[69]; (c) Comparison of conformation changes of 11 aptamers and their binding rates with ligands in nanocavities of two-dimensional DNA origami[70]
Fig.5 Biological applications of receptor-ligand interactions based on framework nucleic acids(a) Multivalent aptamers based on DNA tetrahedrons for circulating tumor cell capture[67]; (b) Measuring the binding force between multivalent aptamers and cell surface receptors encoded by topological engineering DNA tetrahedrons[68]; (c) Multivalent aptamer-conjugated DNA origami as a targeted delivery vector for the anticancer drug Doxorubicin[75]; (d) Targeted delivery and responsive release of thrombin by DNA nanorobots linked with aptamers[78]
1 | KIESSLING L L, GESTWICKI J E.STRONG L E. Synthetic multivalent ligands in the exploration of cell-surface interactions[J]. Curr Opin Chem Biol, 2000, 4: 696-703. |
2 | UEKI R, ATSUTA S, UEKI A, et al. Nongenetic reprogramming of the ligand specificity of growth factor receptors by bispecific DNA aptamers[J]. J Am Chem Soc, 2017, 139(19): 6554-6557. |
3 | HUPPA J B, AXMANN M, MORTELMAIER M A, et al. Tcr-peptide-MHC interactions in situ show accelerated kinetics and increased affinity[J]. Nature, 2010, 463(7283): 963-967. |
4 | TONG G J, HSIAO S C, CARRICO Z M, et al. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles[J]. J Am Chem Soc, 2009, 131: 11174-11178. |
5 | YUAN Q, WU Y, WANG J, et al. Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided g-quadruplex DNA carrier and near-infrared light[J]. Angew Chem Int Ed, 2013, 52(52): 13965-13969. |
6 | WU Y, SEFAH K, LIU H, et al. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 5-10. |
7 | SHENG W, CHEN T, TAN W, et al. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices[J]. ACS Nano, 2013, 7: 7067-7076. |
8 | HUANG Y, CHANG H, TAN W. Cancer cell targeting using multiple aptamers conjugated on nanorods[J]. Anal Chem, 2008, 80: 567-572. |
9 | GENG Z, WANG L, LIU K, et al. Enhancing anti-PD-1 immunotherapy by nanomicelles self-assembled from multivalent aptamer drug conjugates[J]. Angew Chem Int Ed, 2021, 60(28): 15459-15465. |
10 | YANG Y, SUN X, XU J, et al. Circular bispecific aptamer-mediated artificial intercellular recognition for targeted T cell immunotherapy[J]. ACS Nano, 2020, 14(8): 9562-9571. |
11 | GE Z, GU H, LI Q, et al. Concept and development of framework nucleic acids[J]. J Am Chem Soc, 2018, 140(51): 17808-17819. |
12 | SEEMAN N C, SLEIMAN H F. DNA nanotechnology[J]. Nat Rev Mater, 2017, 3: 17068. |
13 | LIU N, LIEDL T. DNA-assembled advanced plasmonic architectures[J]. Chem Rev, 2018, 118(6): 3032-3053. |
14 | OUYANG X, WANG M, GUO L, et al. DNA nanoribbon-templated self-assembly of ultrasmall fluorescent copper nanoclusters with enhanced luminescence[J]. Angew Chem Int Ed, 2020, 59(29): 11836-11844. |
15 | ZHANG Q, JIANG Q, LI N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy[J]. ACS Nano, 2014, 8: 6633-6643. |
16 | KONG G, XIONG M, LIU L, et al. DNA origami-based protein networks: from basic construction to emerging applications[J]. Chem Soc Rev, 2021, 50(3): 1846-1873. |
17 | KUZUYA A, KIMURA M, NUMAJIRI K, et al. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly[J]. ChemBioChem, 2009, 10(11): 1811-1815. |
18 | NUMAJIRI K, KIMURA M, KUZUYA A, et al. Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold[J]. Chem Commun, 2010, 46(28): 5127-5129. |
19 | MALLIK L, DHAKAL S, NICHOLS J, et al. Electron microscopic visualization of protein assemblies on flattened DNA origami[J]. ACS Nano, 2015, 9: 7133-7141. |
20 | LI W, YANG X, HE L, et al. Self-assembled DNA nanocentipede as multivalent drug carrier for targeted delivery[J]. ACS Appl Mater Interfaces, 2016, 8(39): 25733-25740. |
21 | OUYANG X, DE STEFANO M, KRISSANAPRASIT A, et al. Docking of antibodies into the cavities of DNA origami structures[J]. Angew Chem Int Ed, 2017, 56(46): 14423-14427. |
22 | SHEN W, ZHONG H, NEFF D, et al. NTA directed protein nanopatterning on DNA origami nanoconstructs[J]. J Am Chem Soc, 2009, 131: 6660-6661. |
23 | YAMAZAKI T, HEDDLE J G, KUZUYA A, et al. Orthogonal enzyme arrays on a DNA origami scaffold bearing size-tunable wells[J]. Nanoscale, 2014, 6(15): 9122-9126. |
24 | 黄子珂, 刘超, 付强强, 等. 核酸适配体荧光探针在生化分析和生物成像中的研究进展[J]. 应用化学, 2018, 35(1): 28-39. |
HUANG Z K, LIU C, FU Q Q, et al. Aptamer-based fluorescence probe for bioanalysis and bioimaging[J]. Chinese J Appl Chem, 2018, 35(1): 28-39. | |
25 | CHHABRA R, SHARMA J, KE Y, et al. Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures[J]. J Am Chem Soc, 2007(129): 10304-10305. |
26 | FU J, LIU M, LIU Y, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures[J]. J Am Chem Soc, 2012, 134(12): 5516-5519. |
27 | FISHER P D E, SHEN Q, AKPINAR B, et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement[J]. ACS Nano, 2018, 12(2): 1508-1518. |
28 | NAKATA E, DINH H, NGO T A, et al. A modular zinc finger adaptor accelerates the covalent linkage of proteins at specific locations on DNA nanoscaffolds[J]. Chem Commun, 2015, 51(6): 1016-1019. |
29 | KOSSMANN K J, ZIEGLER C, ANGELIN A, et al. A rationally designed connector for assembly of protein-functionalized DNA nanostructures[J]. ChemBioChem, 2016, 17(12): 1102-1106. |
30 | SACCA B, MEYER R, ERKELENZ M, et al. Orthogonal protein decoration of DNA origami[J]. Angew Chem Int Ed, 2010, 49(49): 9378-9383. |
31 | ILIUK A B, HU L, TAO W A. Aptamer in bioanalytical applications[J]. Anal Chem, 2011, 83(12): 4440-4452. |
32 | TAN W, DONOVAN M J, JIANG J, Aptamers from cell-based selection for bioanalytical applications[J]. Chem Rev, 2013, 113(4): 2842-2862. |
33 | MAMMEN M, CHOI S, WHITESIDES G M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors[J]. Angew Chem Int Ed, 1998, 37: 2754-2794. |
34 | FASTING C, SCHALLEY C A, WEBER M, et al. Multivalency as a chemical organization and action principle[J]. Angew Chem Int Ed, 2012, 51(42): 10472-10498. |
35 | CZAJKOWSKYA D M, SHAO Z. The human IgM pentamer is a mushroom-shaped molecue with a flexural bias[J]. PNAS, 2009, 106: 14960-14965. |
36 | HERNANDEZ-LOPEZ R A, YU W, CABRAL K A, et al. T cell circuits that sense antigen density with an ultrasensitive threshold[J]. Science, 2021, 371: 1166-1171. |
37 | LIN M, ZHANG J, WAN H, et al. Rationally designed multivalent aptamers targeting cell surface for biomedical applications[J]. ACS Appl Mater Interfaces, 2021, 13(8): 9369-9389. |
38 | ZHU G, HU R, ZHAO Z, et al. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications[J]. J Am Chem Soc, 2013, 135(44): 16438-16445. |
39 | LIU X, YAN H, LIU Y, et al. Targeted cell-cell interactions by DNA nanoscaffold-templated multivalent bispecific aptamers[J]. Small, 2011, 7(12): 1673-1682. |
40 | ROTHEMUND P W. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. |
41 | 付衍明, 张钊, 李璨, 等. DNA折纸术研究进展[J]. 应用化学, 2010, 27 (2): 125-131. |
FU Y M, ZHANG Z, LI C, et al. Recent progress in DNA origami[J]. Chinese J Appl Chem, 2010, 27(2): 125-131. | |
42 | HUANG D, PATEL K, PEREZ-GARRIDO S, et al. DNA origami nanoarrays for multivalent investigations of cancer cell spreading with nanoscale spatial resolution and single-molecule control[J]. ACS Nano, 2019, 13(1): 728-736. |
43 | HAWKES W, HUANG D, REYNOLDS P, et al. Probing the nanoscale organisation and multivalency of cell surface receptors: DNA origami nanoarrays for cellular studies with single-molecule control[J]. Faraday Discuss, 2019, 219(0): 203-219. |
44 | DUTTA P K, ZHANG Y, BLANCHARD A T, et al. Programmable multivalent DNA-origami tension probes for reporting cellular traction forces[J]. Nano Lett, 2018, 18(8): 4803-4811. |
45 | GOODMAN R P, BERRY R M, TURBERFIELD A J. The single-step synthesis of a DNA tetrahedron[J]. Chem Commun, 2004(12): 1372-1373. |
46 | GOODMAN R P, SCHAAP A T, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication[J]. 2005, 310: 1661-1665. |
47 | ZHANG T, CUI W, TIAN T, et al. Progress in biomedical applications of tetrahedral framework nucleic acid-based functional systems[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47115-47126. |
48 | LI J, PEI H, ZHU B, et al. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5: 8783-8789. |
49 | ZHANG J, LIN B, WU L, et al. DNA nanolithography enables a highly ordered recognition interface in a microfluidic chip for the efficient capture and release of circulating tumor cells[J]. Angew Chem Int Ed, 2020, 59(33): 14115-14119. |
50 | LI J, DAI J, JIANG S, et al. Encoding quantized fluorescence states with fractal DNA frameworks[J]. Nat Commun, 2020, 11(1): 2185 |
51 | XIE M, GUO L, XING S, et al. Cell imaging with multi-color DNA framework probes[J]. Chem Commun, 2021, 57(86): 11318-11321. |
52 | SIMONS K, TOOMRE D. Lipid rafts and signal transduction[J]. Nat Rev, 2000, 1: 31-41. |
53 | GOMES DE CASTRO M A, WILDHAGEN H, SOGRATE-IDRISSI S, et al. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane[J]. Nat Commun, 2019, 10(1) :820. |
54 | DEY S, FAN C, GOTHELF K V, et al. DNA origami[J]. Nat Rev Methods Primers, 2021, 1(1): 13. |
55 | RINKER S, KE Y, LIU Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding[J]. Nat Nanotechnol, 2008, 3(7): 418-422. |
56 | SHAW A, LUNDIN V, PETROVA E, et al. Spatial control of membrane receptor function using ligand nanocalipers[J]. Nat Methods, 2014, 11(8): 841-846. |
57 | DIEBOLDER C A, BEURSKENS F J, JONG R N, et al. Complement is activated by IgG hexamers assembled at the cell surface[J]. Science, 2014, 343: 1260-1264. |
58 | SONDERMANN P, HUBER R, OOSTHUIZEN V, et al. The 3.2-Å crystal structure of the human IgG fc fragment-fcγriii complex[J]. Nature, 2000, 406: 267-273. |
59 | QIAO S, KOBAYASHI K, JOHANSEN F E, et al. Dependence of antibody-mediated presentation of antigen on FcRn[J]. Proc Nat Acad Sci, 2008, 105: 9337-9342. |
60 | SHAW A, SANDLIE I, MICHAELSEN T E, et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies[J]. Nat Nanotechnol, 2019, 14: 184-190. |
61 | ZHANG P, LIU X, LIU P, et al. Capturing transient antibody conformations with DNA origami epitopes[J]. Nat Commun, 2020, 11(1): 3114. |
62 | VENEZIANO R, MOYER T J, STONE M B, et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami[J]. Nat Nanotechnol, 2020, 15(8): 716-723. |
63 | ROSIER B, MARKVOORT A J, GUMI AUDENIS B, et al. Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome[J]. Nat Catal, 2020, 3(3): 295-306. |
64 | ZHANG K, DENG R, SUN Y, et al. Reversible control of cell membrane receptor function using DNA nano-spring multivalent ligands[J]. Chem Sci, 2017, 8(10): 7098-7105. |
65 | HARRISON S C. Looking inside adenovirus[J]. Science, 2010, 329: 1026-1027. |
66 | CAI H, MULLER J, DEPOIL D, et al. Full control of ligand positioning reveals spatial thresholds for T cell receptor triggering[J]. Nat Nanotechnol, 2018, 13: 610-617. |
67 | LI M, DING H, LIN M, et al. DNA framework-programmed cell capture via topology-engineered receptor-ligand interactions[J]. J Am Chem Soc, 2019, 141(47): 18910-18915. |
68 | YIN F, LI M, MAO X, et al. DNA framework-based topological cell sorters[J]. Angew Chem Int Ed, 2020, 59(26): 10406-10410. |
69 | KWON P S, REN S, KWON S J, et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition[J]. Nat Chem, 2020, 12(1): 26-35. |
70 | RAFAT A A, SAGREDO S, THALHAMMER M, et al. Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities[J]. Nat Chem, 2020, 12: 852-859. |
71 | ZHONG L, CAI S, HUANG Y, et al. DNA octahedron-based fluorescence nanoprobe for dual tumor-related mrnas detection and imaging[J]. Anal Chem, 2018, 90(20): 12059-12066. |
72 | XUE C, ZHANG S, LI C, et al. Y-shaped backbone-rigidified triangular DNA scaffold-directed stepwise movement of a dnazyme walker for sensitive microrna imaging within living cells[J]. Anal Chem, 2019, 91(24): 15678-15685. |
73 | LI Q, ZHAO D, SHAO X, et al. Aptamer-modified tetrahedral DNA nanostructure for tumor-targeted drug delivery[J]. ACS Appl Mater Interfaces, 2017, 9(42): 36695-36701. |
74 | SHI S, FU W, LIN S, et al. Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier[J]. Nanomedicine, 2019, 21: 102061. |
75 | CAO M, SUN Y, XIAO M, et al. Multivalent aptamer-modified DNA origami as drug delivery system for targeted cancer therapy[J]. Chem Res Chinese Univ, 2019, 36(2): 254-260. |
76 | GE Z, GUO L, WU G, et al. DNA origami-enabled engineering of ligand-drug conjugates for targeted drug delivery[J]. Small, 2020, 16(16): e1904857. |
77 | ZHANG P, FISCHER A, OUYANG Y, et al. Aptamer-modified DNA tetrahedra-gated metal-organic framework nanoparticle carriers for enhanced chemotherapy or photodynamic therapy[J]. Chem Sci, 2021, 12(43): 14473-14483. |
78 | LI S, JIANG Q, LIU S, et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nat Biotech, 2018, 36: 258-264. |
[1] | WEI Guobing,KONG Derong,XU Huihui,YIN Zhaojiang,ZHANG Jing,CUI Hanfeng,HONG Nian,YANG Jie,XIONG Wei,LIU Wenming,GUO Qianwen,CHENG Lin,FAN Hao. A New Type of Electrochemiluminescence Sensor for Detection of Mercury Ion in Chinese Medicinal Materials Danshen Based on Host-Guest Interaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 595-602. |
[2] | ZHU Jiang, GOU Wenxiu, WANG Xiaomin, CHEN Lidong, LENGRubing, JIANG Chunjie. Synthesis of Ionic Coordination Compounds with Naphthalenedisulfonic Acid and Their Molecular Recognition Properties [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 105-110. |
[3] | ZHANG Tieli, CHAI Guoping, HE Caixia, WANG Lei. Preparation of p-Hydroxybenzoic Acid-Imprinted Polymer Particulates and Application to Solid Phase Extraction [J]. Chinese Journal of Applied Chemistry, 2016, 33(2): 229-237. |
[4] | WAGN Susu, ZHANG Yue, LI Hui, XU Miaomiao. Preparation, Characterization and Recognition Behavior of Quercetin-Rutin Bi-template Molecularly Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2015, 32(11): 1290-1298. |
[5] | HOU Changjun1*, ZHANG Yuchan1, HUANG Shun1, LIU Zhen1, SHEN Caihong2, ZHANG Suyi2, HUO Danqun1. Research Progress of Biomolecular Recognition Based on Porphyrins and Porphyrin Derivatives [J]. Chinese Journal of Applied Chemistry, 2011, 28(09): 977-985. |
[6] | WU Lin-Hua*, TA Hong-Gui, ZHONG Chun-Long. Selective Recognition of Zinc Ion by N'-((2-Hydroxynaphthalen-1-yl)methylene)-2-naphthohydrazide [J]. Chinese Journal of Applied Chemistry, 2010, 27(06): 632-636. |
[7] | XU Zhi-Feng*, WU Shuang, WU Xiao-Hui, KUANG Dai-Zhi, ZHANG Fu-Xing, WANG Jian-Qiu. Studies on the Preparation, Mechanism of Recognition and Binding Characteristic of Ferrocenecarboxylic Acid Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2010, 27(04): 384-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||