Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (4): 585-598.DOI: 10.19894/j.issn.1000-0518.210448
• Review • Previous Articles Next Articles
Qi ZHANG1, Qian ZHANG1(), Xiao-Meng SHI2, Ya-Qi KONG1, Ke-Xin GAO1, Ya-Ping DU2()
Received:
2021-09-01
Accepted:
2021-11-22
Published:
2022-04-01
Online:
2022-04-19
Contact:
Qian ZHANG,Ya-Ping DU
Supported by:
CLC Number:
Qi ZHANG, Qian ZHANG, Xiao-Meng SHI, Ya-Qi KONG, Ke-Xin GAO, Ya-Ping DU. Research Progress of Rare Earth Bromides Based Solid Electrolytes for All⁃Solid⁃State Batteries[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 585-598.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210448
Fig.2 (a) The Nyquist plots of the EIS measurement results of LYC and LYB. (b) Arrhenius conductivity plots of LYC and LYB. (c) Initial charge/discharge curves of all-solid-state cells (LYC, LYC/LYB, Li2S-P2S5 (LPS)). (d) The discharge capacity retention and coulombic efficiency of the LYC-cell and the LYC/LYB-cell for 100 cycles[35]
Fig. 3 (a, b) Proposed Li+ diffusion pathways along different orientations of LYBC-HP. (c) Arrhenius plots of conductivities of LYBC-BM samples. (d) LYBC-BM after hot-pressed at 170 ℃, 294 MPa. SEM images of (e) cold-pressed LYBC-BM and (f) hot-pressed LYBC-HP[43]
Fig. 4 Electrochemical performance of LCO/LYBC/In-Li battery(a) Charge-discharge curves at 0.1 C. (b) Cycling performance at 0.1 C. (c) Discharge curves at different rates. (d) Rate performances of ASSB cells with LYBC and LYC, respectively[43]
Fig. 5 The XRD Rietveld refinement results of (a) hc-LYC and (b) hc-LYB. (c,d) The crystal structures of LYC and LYB obtained from Rietveld refinement, superimposed with a calculated BVSE-based lithium-ion potential map. The yellow surface represents the ionic conduction path, and the regions enclosed with red surfaces represent the stable lithium-ion positions[35]
Fig. 7 Li-ion conductivities versus Li octahedral occupancy in (a) Li x M2/3Cl4, (b) Li x M1/2Cl4 and (c) Li x MCl4. (d) Li-ion conductivities as a function of M cation concentration y in hypothetical Li-ion conductors Li x M y Cl4, M = Sc3+, Zr4+, and Hf4+ at 600 K, substituted with reduced M cation concentration from original Li2MgCl4 materials. (e) Li-ion conductivities at 600 K of original Li2MgCl4, hypothetical Li-ion conductors derived from Li2MgCl4 with reduced cation concentrations, and original Li3MCl6 materials, along with their crystal structures (right) and (f-h) radial distribution function (RDF) g(r) of M cations[59]
1 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29. |
2 | ALBERTUS P, BABINEC S, LITZELMAN S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nat Energy, 2018, 3(1): 16-21. |
3 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587-603. |
4 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. J Am Chem Soc, 2013, 135(4): 1167-1176. |
5 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
6 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
7 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 16030. |
8 | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett, 2015, 15(5): 3317-3323. |
9 | SCHNELL J, GUNTHER T, KNOCHE T, et al. All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production[J]. J Power Sources, 2018, 382: 160-175. |
10 | MA C, CHENG Y Q, CHEN K, et al. Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries[J]. Adv Energy Mater, 2016, 6(11): 1600053. |
11 | BERNUY-LOPEZ C, MANALASTAS W, DEL AMO J M L, et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chem Mater, 2014, 26(12): 3610-3617. |
12 | GEIGER C A, ALEKSEEV E, LAZIC B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor[J]. Inorg Chem, 2011, 50(3): 1089-1097. |
13 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682-686. |
14 | SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ Sci, 2014, 7(2): 627-631. |
15 | ZHANG Q, GAO Z Q, SHI X M, et al. Recent advances on rare earths in solid lithium ion conductors[J]. J Rare Earths, 2021, 39(1): 1-10. |
16 | LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429-1461. |
17 | LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Adv Energy Mater, 2018, 8(27): 1800933. |
18 | 惠康龙, 傅继澎, 高湉, 等. 金属硫化物在可充电电池中的研究进展[J]. 应用化学, 2020, 37(12): 1384-1402. |
HUI K L, FU J P, GAO T, et al. Research progress of metal sulfides in rechargeable batteries[J]. Chinese J Appl Chem, 2020, 37(12): 1384-1402. | |
19 | SAKUDA A, HAYASHI A, TATSUMISAGO M, et al. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery[J]. Sci Rep, 2013, 3: 2261. |
20 | PARK H, YU S, SIEGEL D J. Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Lett, 2021, 6(1): 150-157. |
21 | MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116-119. |
22 | THOMPSON T, YU S H, WILLIAMS L, et al. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12[J]. ACS Energy Lett, 2017, 2(2): 462-468. |
23 | WANG D W, SUN Q, LUO J, et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2019, 11(5): 4954-4961. |
24 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103. |
25 | TYAGI A K, KOHLER J, BALOG P, et al. Syntheses and structures of Li3ScF6 and high pressure LiScF4-, luminescence properties of LiScF4, a new phase in the system LiF-ScF3[J]. J Solid State Chem, 2005, 178(9): 2620-2625. |
26 | RAKHMATULLIN A, POLOVOV I B, MALTSEV D, et al. Combined approach for the structural characterization of Alkali fluoroscandates: solid-state NMR, powder X-ray diffraction, and density functional theory calculations[J]. Inorg Chem, 2018, 57(3): 1184-1195. |
27 | SOROKIN N I, KARIMOV D N, KOMAR'KOVA O N. Electrophysical properties of LiYbF4 crystals[J]. Crystallogr Rep, 2010, 55(3): 448-449. |
28 | OI T. Ionic-conductivity of amorphous mLiFnMF3 thin films(M=Al,Cr,Sc or Al+Sc)[J]. Mater Res Bull, 1984, 19(10): 1343-1348. |
29 | OI T. Ionic-conductivity of LiF thin-films containing diavalent or trivalent metal fluorides[J]. Mater Res Bull, 1984, 19(4): 451-457. |
30 | 陈昆峰, 李宫, 梁晰童, 等. 稀土改性电化学储能电极材料的研究进展[J]. 硅酸盐学报, 2016, 44(8): 1241-1247. |
CHEN K F,Li G,LIANG X T, et al. Rare earth element ion modified electrochemical energy storage electrode materials- a short review[J]. J Chinese Ceram Soc, 2016, 44(8): 1241-1247. | |
31 | MUY S, VOSS J, SCHLEM R, et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors[J]. iScience, 2019, 16: 270-282. |
32 | PARK K H, KAUP K, ASSOUD A, et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries[J]. ACS Energy Lett, 2020, 5(2): 533-539. |
33 | LIANG J, LI X, WANG S, et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries[J]. J Am Chem Soc, 2020, 142(15): 7012-7022. |
34 | BOHNSACK A, STENZEL F, ZAJONC A, et al. Ternary halides of the A3MX6 type.VII. The bromides Li3MBr6 (M = Sm-Lu, Y): synthesis, crystal structure, and ionic mobility [J]. Z Anorg Allg Chem, 1997, 623(7): 1352-1356. |
35 | ASANO T, SAKAI A, OUCHI S, et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries[J]. Adv Mater, 2018, 30(44): 1803075. |
36 | NEUDECKER B J, WEPPNER W. Li9SiAlO8: a lithium ion electrolyte for voltages above 5.4 V[J]. J Electrochem Soc, 1996, 143(7): 2198-2203. |
37 | IWAMOTO K, AOTANI N, TAKADA K, et al. Application of Li3PO4-Li2S-SiS2 glass to the solid-state secondary batteries[J]. Solid State Ionics, 1995, 79: 288-291. |
38 | WANG S, BAI Q, NOLAN A M, et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew Chem Int Ed, 2019, 58(24): 8039-8043. |
39 | YU C, LI Y, ADAIR K R, et al. Tuning ionic conductivity and electrode compatibility of Li3YBr6 for high-performance all solid-state Li batteries[J]. Nano Energy, 2020, 77: 105097. |
40 | YU C, VAN EIJCK L, GANAPATHY S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries[J]. Electrochim Acta, 2016, 215: 93-99. |
41 | YU C, GANAPATHY S, HAGEMAN J, et al. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33296-33306. |
42 | YU C, GANAPATHY S, VAN ECK E R H, et al. Investigation of Li-ion transport in Li7P3S11 and solid-state lithium batteries[J]. J Energy Chem, 2019, 38: 1-7. |
43 | LIU Z T, MA S, LIU J, et al. High ionic conductivity achieved in Li3Y(Br3Cl3) mixed halide solid electrolyte via promoted diffusion pathways and enhanced grain boundary[J]. ACS Energy Lett, 2021, 6(1): 298-304. |
44 | SHI X M, ZENG Z Z, SUN M Z, et al. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state Li-S battery[J]. Nano Lett, 2021, 21(21): 9325-9331. |
45 | SHI X M, ZENG Z Z, ZHANG H T, et al. Gram-scale synthesis of nanosized Li3HoBr6 solid electrolyte for all-solid-state Li-Se battery[J]. Small Methods, 2021, 5(11): 2101002. |
46 | NAGEL R, GROSS T W, GUNTHER H, et al. Li-6 and Li-7 MAS NMR studies on fast ionic conducting spinel-type Li2MgCl4, Li2- xCuxMgCl4, Li2- xNaxMgCl4, and Li2ZnCl4[J]. J Solid State Chem, 2002, 165(2): 303-311. |
47 | LI X, LIANG J, CHEN N, et al. Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angew Chem Int Ed, 2019, 58(46): 16427-16432. |
48 | LI X, LIANG J, LUO J, et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries[J]. Energy Environ Sci, 2019, 12(9): 2665-2671. |
49 | WANG C H, LIANG J W, LUO J, et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries[J]. Sci Adv, 2021, 7(37). |
50 | WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026-1031. |
51 | RAO R P, ADAMS S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries[J]. Phys Status Solid A, 2011, 208(8): 1804-1807. |
52 | LI W, LIANG J, LI M, et al. Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and operando synchrotron X-ray analytical techniques[J]. Chem Mater, 2020, 32(16): 7019-7027. |
53 | LI X, LIANG J, ADAIR K R, et al. Origin of superionic Li3Y1- xInxCl6 halide solid electrolytes with high humidity tolerance[J]. Nano Lett, 2020, 20(6): 4384-4392. |
54 | WANG S H, XU X W, CUI C, et al. Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure[J]. Adv Funct Mater, 2021, 32(7): 2108805. |
55 | RIEGGER L, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angew Chem Int Ed, 2020, 60(12): 6718-6723. |
56 | CHOI S, JEON M, KIM B K, et al. Electrochemical behaviors of Li-argyrodite-based all-solid-state batteries under deep-freezing conditions[J]. Chem Commun, 2018, 54(100): 14116-14119. |
57 | TAKADA K, AOTANI N, IWAMOTO K, et al. Solid state lithium battery with oxysulfide glass[J]. Solid State Ionics, 1996, 86/88: 877-882. |
58 | YU T W, LIANG J W, LUO L, et al. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries[J]. Adv Energy Mater, 2021, 11(36): 2101915. |
59 | LIU Y, WANG S, NOLAN A M, et al. Tailoring the cation lattice for chloride lithium-ion conductors[J]. Adv Energy Mater, 2020, 10(40): 2002356. |
60 | SCHLEM R, MUY S, PRINZ N, et al. Mechanochemical synthesis: a tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors[J]. Adv Energy Mater, 2020, 10(6): 1903719. |
61 | SCHLEM R, BERNGES T, LI C, et al. Lattice dynamical approach for finding the lithium superionic conductor Li3ErI6[J]. ACS Appl Energy Mater, 2020, 3(4): 3684-3691. |
62 | XU Z, CHEN X, LIU K, et al. Influence of anion charge on Li ion diffusion in a new solid-state electrolyte, Li3LaI6[J]. Chem Mater, 2019, 31(18): 7425-7433. |
63 | KIM K, PARK D, JUNG H G, et al. Material design strategy for halide solid electrolytes Li3MX6 (X = Cl, Br, and I) for all-solid-state high-voltage Li-ion batteries[J]. Chem Mater, 2021, 33(10): 3669-3677. |
64 | KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15-50. |
65 | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59(3): 1758-1775. |
66 | BLOCHL P E, FORST C J, SCHIMPL J. Projector augmented wave method: ab initio molecular dynamics with full wave functions[J]. Bull Mater Sci, 2003, 26(1): 33-41. |
67 | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1997, 77(18): 3865-3868. |
68 | KLIMES J, BOWLER D R, MICHAELIDES A. Chemical accuracy for the van der Waals density functional[J]. J Phys-Condens Matter, 2010, 22(2): 22201. |
69 | WAN T H, CIUCCI F. Ab initio study of the defect chemistry and substitutional strategies for highly conductive Li3YX6 (X = F, Cl, Br, and I) electrolyte for the application of solid-state batteries[J]. ACS Appl Energy Mater, 2021, 4(8): 7930-7941. |
[1] | Peng BU, Hong-Liang LI. Preparation and Upconversion Luminescence Study of Rare Earth Yb3+/Tm3+ Doped NaGd(MO4)2 Phosphors [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 374-379. |
[2] | Song-Tao ZHANG, Ying-Hui WANG, Hong-Jie ZHANG. Nd3+ Sensitized Fluorescent Nanoprobes for Vascular Imaging in the Second Near Infrared Window [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 685-693. |
[3] | HU Jiale, XUE Dongfeng. Research Progress on the Characteristics of Rare Earth Ions and Rare Earth Functional Materials [J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255. |
[4] | HAO Bin,ZHAO Wenwu,YU Jianyuan,LIU Jinqiang,LIU Jian,DONG Xiuzhen,WANG Xiuwen. Preparation and Luminescence Property of Ba5-3x/2B4O11∶xEu3+ Phosphor [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 548-553. |
[5] | LIU Ning,LIU Shuilin,WU Suyun,TANG Xinde,WU Zhi,LI Aiyang. CTAB-P123-Assisted Synthesis of Orderly Mesoporous KF/Al-Ce-SBA-15 Solid Base and Its Catalytic Application [J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1294-1300. |
[6] | LI Fei,XIA Zhiguo. Rare Earth Doped Phosphors and Inorganic Quantum Dots for Solid State Lighting:Opportunity and Challenge [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 859-870. |
[7] | CHENG Hongli, ZHOU Chengfang, WANG Xianglan. Enrichment of Rare Earth Through the Hollow Fiber Dispersion Liquid Membrane [J]. Chinese Journal of Applied Chemistry, 2017, 34(8): 971-976. |
[8] | CEN Peipei, HE Yanping, LI Feifei, CAO Liang, CHEN Xiaoyan, SONG Weiming. Microcalorimetric Study of Micrococcus Luteus Inhibition by Rare Earth Complexes with Carboxylate Ligand [J]. Chinese Journal of Applied Chemistry, 2017, 34(5): 582-589. |
[9] | SHE Chuan, YU Pei, LUO Xingting, TIAN Zaiwen, ZHANG Wanxuan. Synthesis of Alkynyl Selenides by Gold Tribromide Catalyzed Reaction of Terminal Alkynes with Diaryl Diselenides [J]. Chinese Journal of Applied Chemistry, 2017, 34(10): 1134-1139. |
[10] | LI Gong, CHEN Kunfeng, JIN Jingyi, XUE Dongfeng. La3+-doped NiCo Layered Double Hydroxide Nanosheets and Their Supercapacitive Performance [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 71-75. |
[11] | XIE Rongjun,ZHOU Tianliang,TAKAHAHIS Kohei,HIROSAKI Naoto. Beta-Sialon(Si6-zAlzOzN8-z):Eu2+:A Promising Narrow-band Green Phosphor for Light-emitting Diode Backlights [J]. Chinese Journal of Applied Chemistry, 2016, 33(8): 855-866. |
[12] | ZHANG Haoran, WANG Jin, LEI Bingfu, LIU Yingliang. Influence of Tm3+ Codopant on Luminescence Properties of CaAlSiN3:Eu2+ Phosphor [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 1310-1315. |
[13] | ZHANG Haoran, WANG Jin, LEI Bingfu, LIU Yingliang. Influence of Tm3+ Codopant on Luminescence Properties of CaAlSiN3:Eu2+ Phosphor [J]. Chinese Journal of Applied Chemistry, 2016, 33(11): 0-0. |
[14] | ZHANG Dandan, ZHA Xianyu, GAO Baojiao. Synthesizing and Bonding Bidentate Schiff Base Ligand on Side Chain of Polysulfone and Preliminary Exploration of Luminescence Property of Functionalized Polysulfone-Tb(Ⅲ) Complexes [J]. Chinese Journal of Applied Chemistry, 2016, 33(1): 53-62. |
[15] | TAN Yuhuia, WANG Yana, ZHANG Menga, GAO Jixinga, XU Qinga, TANG Yunzhia, , YANG Shaopingb, . Electrodeposited Zn-Ni-P-La Alloys Coating for Electrolytic Copper Foil [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 458-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||