[1] TANG C D, SHI H L, JIA Y Y, et al. High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology[J]. Enzyme Microb Tech, 2020, 136: 109513. [2] GONG X M, QIN Z, LI F L, et al. Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor[J]. ACS Catal, 2018, 9(1): 147-153. [3] LI H, TIAN P, XU J H, et al. Identification of an imine reductase for asymmetric reduction of bulky dihydroisoquinolines[J]. Org Lett, 2017, 19(12): 3151-3154. [4] WEI P, GAO J X, ZHENG G W, et al. Engineering of a novel carbonyl reductase with coenzyme regeneration in E.coli for efficient biosynthesis of enantiopure chiral alcohols[J]. J Biotechnol, 2016, 230: 54-62. [5] CHEN F F, ZHANG Y H, ZHANG Z J, et al. An ammonium-formate-driven trienzymatic cascade for ω-transaminase-catalyzed (R)-selective amination[J]. J Org Chem, 2019, 84(22): 14987-14993. [6] KAUP B, BRINGER-MEYER S, SAHM H. Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation[J]. Appl Microbiol Biot, 2004, 64(3): 333-339. [7] ZHANG Y, HUANG Z, DU C, et al. Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol[J]. Metab Eng, 2009, 11(2): 101-106. [8] XU G C, ZHANG L L, NI Y. Enzymatic preparation of D-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967[J]. J Biotechnol, 2016, 222: 29-37. [9] WANG Y, LI L, MA C, et al. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl[J]. Sci Rep, 2013, 3: 2643. [10] MU W, LIU F, JIA J, et al. 3-Phenyllactic acid production by substrate feeding and pH-control in fed-batch fermentation of Lactobacillus sp. SK007[J]. Bioresource Technol, 2009, 100(21): 5226-5229. [11] SLUSARCZYK H, FELBER S, KULA M-R, et al. Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues[J]. Eur J Biochem, 2000, 267(5): 1280-1289. [12] CORDAS C M, CAMPANI O M, BAPTISTA R, et al. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase[J]. J Inorg Biochem, 2019, 196: 110694. [13] LI M, MENG X, SUN Z, et al. Effects of NADH availability on 3-phenyllactic acid production by Lactobacillus plantarum expressing formate dehydrogenase[J]. Curr Microbiol, 2019, 76(6): 706-712. [14] BERRI X, OS-RIVERA S J, BENNETT G N, et al. Metabolic engineering of Escherichia coli: increase of nadh availability by overexpressing an NAD+-dependent formate dehydrogenase[J]. Metab Eng, 2002, 4(3): 217-229. [15] KRATZER R, PUKL M, EGGER S, et al. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli[J]. Microb Cell Fact, 2008, 7: 37. [16] CHEN F F, LIU Y Y, ZHENG G W, et al. Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade[J]. ChemCatChem, 2015, 7(23): 3838-3841. [17] BOMMARIUS AS, KARAU A. Deactivation of formate dehydrogenase (FDH) in solution and at gas-liquid interfaces[J]. Biotechnol Prog, 2005, 21(6): 1663-1672. [18] TISHKOV V, POPOV V. Catalytic mechanism and application of formate dehydrogenase[J]. Biochemistry, 2004, 69(11): 1252-1267. [19] BOMMARIUS A S, SCHWARM M, STINGL K, et al. Synthesis and use of enantiomerically pure tert-leucine[J]. Tetrahedron: Asymmetry, 1995, 6(12): 2851-2888. [20] ZHENG J, YANG T, ZHOU J, et al. Elimination of a free cysteine by creation of a disulfide bond increases the activity and stability of Candida boidinii formate dehydrogenase[J]. Appl Environ Microb, 2017, 83(2): e02624-16. [21] ALEKSEEVA A A, SERENKO A A, KARGOV I S, et al. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations[J]. Protein Eng Des Sel, 2012, 25(11): 781-8. [22] JIANG W, LIN P, YANG R, et al. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii[J]. Appl Microbiol Biot, 2016, 100(19): 8425-8437. [23] OZGUN G P, ORDU E B, TUTUNCU H E, et al. Site saturation mutagenesis applications on candida methylica formate dehydrogenase[J]. Scientifica (Cairo), 2016, 2016: 4902450. [24] ORDU E B, SESSIONS R B, CLARKE A R, et al. Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica[J]. J Mol Catal B: Enzym, 2013, 95: 23-28. [25] 曲戈, 朱彤, 蒋迎迎,等. 蛋白质工程:从定向进化到计算设计[J]. 生物工程学报. 2019, 35(10): 1843-1856. QU G, ZHU T, JIAN Y Y, et al. Protein engineering: from directed evolution to computational design[J]. Chinese J Biotech, 2019, 35(10): 1843-1856. [26] KAN S B J, LEWIS R D, CHEN K, et al. Directed evolution of cytochrome c for carbon-silicon bond formation: bringing silicon to life[J]. Science, 2016, 354(6315): 1048. [27] HAMMER S C, KUBIK G, WATKINS E, et al. Anti-markovnikov alkene oxidation by metal-oxo-mediated enzyme catalysis[J]. Science, 2017, 358(6360): 215. [28] ZHANG R K, CHEN K, HUANG X, et al. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C—H functionalization[J]. Nature, 2019, 565(7737): 67-72. [29] XU Y, CHEN Q, ZHANG Z J, et al. Coevolution of the activity and thermostability of an ε-keto ester reductase for better synthesis of an (R)-α-lipoic acid precursor[J]. ChemBioChem, 2020, DOI: 10.1002/cbic.201900693. [30] TANG C D, DING P J, SHI H L, et al. One-pot synthesis of phenylglyoxylic acid from racemic mandelic acids via cascade biocatalysis[J]. J Agric Food Chem, 2019, 67(10): 2946-2953. [31] TANG C D, SHI H L, JIAO Z J, et al. Exploitation of cold-active cephalosporin C acylase by computer-aided directed evolution and its potential application in low-temperature biosynthesis of 7-aminocephalosporanic acid[J]. J Chem Technol Biot, 2018, 93(10): 2925-2930. [32] GAO S J, WANG J Q, WU M C, et al. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution[J]. Biotechnol Bioeng, 2013, 110(4): 1028-1038. [33] TANG C D, LI J F, WEI X H, et al. Fusing a carbohydrate-binding module into the Aspergillus usamii beta-mannanase to improve its thermostability and cellulose-binding capacity by in silico design[J]. Plos One, 2013, 8(5): e64766. [34] TANG C D, GUO J, LI J F, et al. Enhancing expression level of an acidophilic beta-mannanase in Pichia pastoris by double vector system[J]. Ann Microbiol, 2014, 64(2): 561-569. |