[1] | Helfrich W,Schneider W G.Recombination Radiation in Anthracene Crystals[J]. Phys Rev Lett,1965,14(7):229-231. | [2] | Hoshino S,Suzuki H.Electroluminescence from Triplet Excited States of Benzophene[J]. Appl Phys Lett,1996,69(2):224-227. | [3] | Baldo M A,O'Brien D F,You Y,et al. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature,1998,395(6698):151-154. | [4] | Zhang G Q,Chen J B,Payne Sarah J,et al. Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature Phosphorescence[J]. J Am Chem Soc,2007,129(29):8942-8943. | [5] | Yuan W Z,Shen X Y,Zhao H,et al. Crystallization-induced Phosphorescence of Pure Organic Luminogens at Room Temperature[J]. J Phys Chem C,2010,114(13):6090-6099. | [6] | Bolton O,Lee K,Kim H J,et al. Activating Efficient Phosphorescence from Purely Organic Materials by Crystal Design[J]. Nat Chem,2011,3(3):201-210. | [7] | Deng Y H,Zhao D X,Chen X,et al. Long Lifetime Pure Organic Phosphorescence Based on Water Soluble Carbon Dots[J]. Chem Commun,2013,49(51):5751-5753. | [8] | An Z F,Zheng C,Tao Y,et al. Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence[J]. Nat Mater,2015,14(7):685-690. | [9] | Yang X G,Yan D P.Strongly Enhanced Long-Lived Persistent Room Temperature Phosphorescence Based on the Formation of Metal-Organic Hybrids[J]. Adv Opt Mater,2016,4(6):897-905. | [10] | Kabe R,Notsuka N,Yoshida K,et al. Afterglow Organic Light-Emitting Diode[J]. Adv Mater,2016,28(4):655-660. | [11] | Xue P Z,Sun J B,Chen P,et al. Luminescence Switching of a Persistent Room-temperature Phosphorescent Pure Organic Molecule in Response to External Stimuli[J]. Chem Commun,2015,51(52):10381-10384. | [12] | Li C Y,Tang X,Zhang L Q,et al. Reversible Luminescence Switching of an Organic Solid:Controllable On-Off Persistent Room Temperature Phosphorescence and Stimulated Multiple Fluorescence Conversion[J]. Adv Opt Mater,2015,3(9):1184-1190. | [13] | Katsurada Y,Hirata S,Totani K,et al. Photoreversible On-Off Recording of Persistent Room-Temperature Phosphorescence[J]. Adv Opt Mater,2015,3(12):1726-1737. | [14] | DeRosa C A,Samonina-Kosicka J,Fan Z Y,et al. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules,2015,48(9):2967-2977. | [15] | Jiang K,Zhang L,Lu J F,et al. Triple-Mode Emission of Carbon Dots:Applications for Advanced Anti-Counterfeiting[J]. Angew Chem Int Ed,2016,128(25):7347-7351. | [16] | Jiang K,Wang Y H,Gao X L,et al. Facile, Quick, and Gram-Scale Synthesis of Ultralong-Lifetime Room-Temperature-Phosphorescent Carbon Dots by Microwave Irradiation[J]. Angew Chem Int Ed,2018,57(21):6216-6220. | [17] | Yang Z Y,Mao Z,Zhang X P,et al. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed,2016,55(6):2181-2185. | [18] | Fukagawa H,Shimizu T,Hanashima H,et al. Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Diodes Using Platinum Complexes[J]. Adv Mater,2012,24(37):5099-5103. | [19] | Wang H,Meng L Q,Shen X X,et al. Highly Efficient Orange and Red Phosphorescent Organic Light-Emitting Diodes with Low Roll-Off of Efficiency Using a Novel Thermally Activated Delayed Fluorescence Material as Host[J]. Adv Mater,2015,27(27):4041-4047. | [20] | Han C M,Zhang Z S,Xu H,et al. Controllably Tuning Excited-State Energy in Ternary Hosts for Ultralow-Voltage-Driven Blue Electrophosphorescence[J]. Angew Chem Int Ed,2012,51(40):10104-10108. | [21] | Fateminia S M A,Mao Z,Xu S D,et al. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications[J]. Angew Chem Int Ed,2017,56(40):12160-12164. | [22] | Li Q J,Zhou M,Yang M Y,et al. Induction of Long-lived Room Temperature Phosphorescence of Carbon Dots by Water in Hydrogen-bonded Matrices[J]. Nat Commun,2018,9:7341-7348. | [23] | Xu S,Chen R F,Zhen C,et al. Excited State Modulation for Organic Afterglow:Materials and Applications[J]. Adv Mater,2016,28(45):9920-9940. | [24] | Yang Z Y,Mao Z,Xie Z L,et al. Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials[J]. Chem Soc Rev,2017,46(3):915-1016. | [25] | ZHAO Xuesen,CUI Rongzhen,LI Yunhui,et al. Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices[J]. Chinese J Appl Chem,2016,33(9):1003-1007(in Chinese). 赵学森,崔荣朕,李云辉,等. 红色铱配合物磷光材料及器件的研究进展[J]. 应用化学,2016,33(9):1003-1007. | [26] | Clapp D B.The Phosphorescence of Tetraphenylmethane and Certain Related Substances[J]. J Am Chem Soc,1939,61(2):523-524. | [27] | Bilen C S,Harrison N,Morantz D J.Unusual Room Temperature Afterglow in Some Crystalline Organic Compounds[J]. Nature,1978,271(5642):235-237. | [28] | Gong Y Y,Chen G,Peng Q,et al. Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens[J]. Adv Mater,2015,27(40):6195-6201. | [29] | Yang Z Y,Mao Z,Zhang X P,et al. Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence[J]. Angew Chem Int Ed,2016,55(6):2181-2185. | [30] | He Z K,Zhao W J,Lam Jacky W Y,et al. White Light Emission from a Single Organic Molecule with Dual Phosphorescence at Room Temperature[J]. Nat Commun,2017,8:4161-4168. | [31] | Yang J,Zhen X,Wang B,et al. The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens[J]. Nat Commun,2018,9:8401-8408. | [32] | Mieno H,Kabe R,Notsuka N,et al. Long-Lived Room-Temperature Phosphorescence of Coronene in Zeolitic Imidazolate Framework ZIF-8[J]. Adv Opt Mater,2016,4(7):1015-1021. | [33] | Yang Y S,Wang K Z,Yan D P.Ultralong Persistent Room Temperature Phosphorescence of Metal Coordination Polymers Exhibiting Reversible pH-Responsive Emission[J]. ACS Appl Mater Interfaces,2016,8(24):15489-15496. | [34] | Pfister A,Zhang G,Zareno J,et al. Boron Polylactide Nanoparticles Exhibiting Fluorescence and Phosphorescence in Aqueous Medium[J]. ACS Nano,2008,2(6):1252-1258. | [35] | Samoninakosicka J,Derosa C A,Morris W A,et al. Dual-Emissive Difluoroboron Naphthyl-Phenyl β-DiketonatePolylactide Materials: Effects of Heavy Atom Placement and Polymer Molecular Weight[J]. Macromolecules,2014,47(11):3736-3746. | [36] | Derosa C A,Samoninakosicka J,Fan Z,et al. Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide[J]. Macromolecules,2015,48(9):2967-2977. | [37] | Al-Attar H A,Monkman A P. Room-Temperature Phosphorescence From Films of Isolated Wate-Soluble Conjugated Polymers in Hydrogen-Bonded Matrices[J]. Adv Funct Mater,2012,22(18):3824-3832. | [38] | Fan Z T,Li Y C,Li X H,et al. Surrounding Media Sensitive Photoluminescence of Boron-doped Graphene Quantum Dots for Highly Fluorescent Dyed Crystals, Chemical Sensing and Bioimaging[J]. Carbon,2014,70:149-156. | [39] | Tan X Y,Li Y C,Li X H,et al. Electrochemical Synthesis of Small-sized Red Fluorescent Graphene Quantum Dots as a Bioimaging Platform[J]. Chem Commun,2015,51(13):2544-2546. | [40] | Fan Z T,Li S H,Yuan F L,et al. Fluorescent Graphene Quantum Dots for Biosensing and Bioimaging[J]. RSC Adv,2015,5(25):19773-19789. | [41] | Yuan F L,Ding L,Li Y C,et al. Multicolor Fluorescent Graphene Quantum Dots Colorimetrically Responsive to All-pH and a Wide Temperature Range[J]. Nanoscale,2015,7(27):11727-11733. | [42] | Guo R H,Zhou S X,Li Y C,et al. Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe3+ in Cancer Stem Cells[J]. ACS Appl Mater Interfaces,2015,7(43):23958-23966. | [43] | Yuan F L,Li S H,Fan Z T,et al. Shining Carbon Dots:Synthesis and Biomedical and Optoelectronic Applications[J]. Nano Today,2016,11(5):565-586. | [44] | Wang Z F,Yuan F L,Li X H,et al. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes[J]. Adv Mater,2017,29(37):1702910. | [45] | Fan Z T,Zhou S X,Garcia C,et al. pH-Responsive Fluorescent Graphene Quantum Dots for Fluorescence-guided Cancer Surgery and Diagnosis[J]. Nanoscale,2017,9(15):4928-4933. | [46] | Yuan F L,Wang Z B,Li X H,et al. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes[J]. Adv Mater,2017,29(3):1604436. | [47] | Yuan F L,Yuan T,Sui L Z,et al. Engineering Triangular Carbon Quantum Dots with Unprecedented Narrow Bandwidth Emission for Multicolored LEDs[J]. Nat Commun,2018,9:22491-224911. | [48] | Tan J,Zhang J,Wang L,et al. Synthesis of Smphiphilic Carbon Quantum Dots with Phosphorescence Properties and Their Multifunctional Applications[J]. J Mater Chem C,2016,4(42):10146-10153. | [49] | Tan J,Zou R,Zhang J,et al. Large-scale Synthesis of N-Doped Carbon Quantum Dots and Their Phosphorescence Properties in a Polyurethane Matrix[J]. Nanoscale,2016,8(8):4742-4747. | [50] | Dong X W,Wei L M,Su Y J,et al. Efficient Long Lifetime Room Temperature Phosphorescence of Carbon Dots in a Potash Alum Matrix[J]. J Mater Chem C,2015,3(12):2798-2801. | [51] | Li Q J,Zhou M,Yang Q F,et al. Efficient Room-Temperature Phosphorescence from Nitrogen-Doped Carbon Dots in Composite Matrices[J]. Chem Mater,2016,28(22):8221-8227 | [52] | Bai L Q,Xue N,Wang X R,et al. Activating Efficient Room Temperature Phosphorescence of Carbon Dots by Synergism of Orderly Non-noble Metals and Dual Structural Confinements[J]. Nanoscale,2017,9(20):6658-6664. | [53] | Tao S Y,Lu S Y,Geng Y J,et al. Design of Metal-Free Polymer Carbon Dots:A New Class of Room-Temperature Phosphorescent Materials[J]. Angew Chem Int Ed,2018,57(9):2393-2398. | [54] | Baldo M A,Lamasky S,Burrows P E,et al. Very High-efficiency Green Organic Light-emitting Devices Based on Electrophosphoresoence[J]. Appl Phys Lett,1999,75(1):4-6. | [55] | Adachi C,Baldo M A,Forrest S R,et al. High-efficiency Red Electrophosphorescence Devices[J]. Appl Phys Lett,2001,78(11):1622-1624. | [56] | Zhu W,Mo Y,Yuan M,et al. Highly Efficient Electrophosphorescent Devices Based on Conjugated Polymers Doped with Iridium Complexes[J]. Appl Phys Lett,2002,80(12):2045-2047. | [57] | Adachi C,Baldo M A,Thompson M E,et al. Nearly 100% Internal Phosphorescence Efficiency in an Organic Light-emitting Device[J]. J Appl Phys,2001,90(10):5048-5051. | [58] | Benjamin H,Zheng Y,Batsanov A S,et al. Sulfonyl-substituted Heteroleptic Cyclometalated Iridium(Ⅲ) Complexes as Blue Emitters for Solution-processable Phosphorescent Organic Light-emitting Diodes[J]. Inorg Chem,2016,55(17):8612-8627. |
|