[1] | Rubin B S.Bisphenol A:An Endocrine Disruptor with Widespread Exposure and Multiple Effects[J]. J Steroid Biochem Mol Biol,2011,127(1/2):27-34. | [2] | Alonso-Magdalena P,Ropero A B,Soriano S,et al. Bisphenol-A Acts as a Potent Estrogen via Non-classical Estrogen Triggered Pathways[J]. Mol Cell Endocrinol,2012,355(2):201-207. | [3] | Perez-Lobato R,Mustieles V,Calvente I,et al. Exposure to Bisphenol A and Behavior in School-Age Children[J]. Neuro Toxicol,2016,53:12-19. | [4] | Miao M H,Yuan W,Zhu G P,et al. In Utero Exposure to Bisphenol-A and Its Effect on Birth Weight of Offspring[J]. Reprod Toxicol,2011,32(1):64-68. | [5] | Chen J F,Xiao Y Y,Gai Z X,et al. Reproductive Toxicity of Low Level Bisphenol A Exposures in a Two-Generation Zebrafish Assay:Evidence of Male-specific Effects[J]. Aquat Toxicol,2015,169:204-214. | [6] | Soto A M,Sonnenschein C.Environmental Causes of Cancer:Endocrine Disruptors as Carcinogens[J]. Nat Rev Endocrinol,2010,6(7):363-370. | [7] | Devadoss A,Sudhagar P,Terashima C K,et al. Photoelectrochemical Biosensors:New Insights into Promising Photoelectrodes and Signal Amplification Strategies[J]. J Photochem Photobiol C,2015,24:43-63. | [8] | Wu X L,Wang L B,Ma W,et al. A Simple, Sensitive, Rapid and Specific Detection Method for Bisphenol A Based on Fluorescence Polarization Immunoassay[J]. Immunol Invest,2016,41(1):38-50. | [9] | Braunrath R,Podlipna D,Padlesak S,et al. Determination of Bisphenol A in Canned Foods by Immunoaffinity Chromatography, HPLC, and Fluorescence Detection[J]. J Agric Food Chem,2005,53(23):8911-8917. | [10] | Jiao Y N,Ding L,Fu S L,et al. Determination of Bisphenol A, Bisphenol F and Their Diglycidyl Ethers in Environmental Water by Solid Phase Extraction Using Magnetic Multiwalled Carbon Nanotubes Followed by GC-MS/MS[J]. Anal Methods,2012,4(1):291-298. | [11] | Yi B,Kim C,Yang M.Biological Monitoring of Bisphenol A with HLPC/FLD and LC/MS/MS Assays[J]. J Chromatogr B,2010,878(27):2606-2610. | [12] | Zhao W W,Xu J J,Chen H Y.Photoelectrochemical Bioanalysis:The State of the Art[J]. Chem Soc Rev,2015,44(3):729-741. | [13] | Zhao W W,Xu J J,Chen H Y.Photoelectrochemical DNA Biosensors[J]. Chem Rev,2014,114(15):7421-7441. | [14] | Tang J,Zhang Y Y,Kong B,et al. Solar-Driven Photoelectrochemical Probing of Nanodot/Nanowire/Cell Interface[J]. Nano Lett,2014,14(5):2702-2708. | [15] | Macwan D P,Dave P N,Chaturvedi S.A Review on Nano-TiO2 Sol-Gel Type Syntheses and Its Applications[J]. J Mater Sci,2011,46(11):3669-3686. | [16] | Wang X D,Li Z D,Shi J,et al. One-dimensional Titanium Dioxide Nanomaterials:Nanowires, Nanorods, and Nanobelts[J]. Chem Rev,2014,114(19):9346-9384. | [17] | Xiao X,Zhang W D.Facile synthesis of Nanostructured BiOI Microspheres with High Visible Light-induced Photocatalytic Activity[J]. J Mater Chem,2010,20(28):5866-5870. | [18] | Lei Y Q, Wang,G H,Song, S Y,et al. Room Temperature, Template-Free Synthesis of BiOI Hierarchical Structures:Visible-Light Photocatalytic and Electrochemical Hydrogen Storage Properties[J]. Dalton Trans,2010,39(13):3273-3278. | [19] | Zhang L,Ruan Y F,Liang Y Y,et al. Bismuth Oxyiodide Couples with Glucose Oxidase:A Special Synergized Dual-catalysis Mechanism for Photoelectrochemical Enzymatic Bioanalysis[J]. Appl Mater Interfaces,2018,10(4):3372-3379. | [20] | Zhang X,Zhang L Z,Xie T F,et al. Low-temperature Synthesis and High Visible-light-induced Photocatalytic Activity of BiOI/TiO2 Heterostructures[J]. J Phys Chem C,2009,113(17):7371-7378. | [21] | Liao C X,Ma Z J,Dong G P,et al. BiOI Nanosheets Decorated TiO2 Nanofiber:Tailoring Water Purification Performance of Photocatalyst in Structural and Photo-Responsivity Aspects[J]. Appl Surf Sci,2014,314:481-489. | [22] | Liu B,Aydil E S.Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-sensitized Solar Cells[J]. J Am Chem Soc,2009,131(11):3985-3990. | [23] | Wang L Y,Daoud W A.BiOI/TiO2-nanorod Array Heterojunction Solar Cell:Growth, Charge Transport Kinetics and Photoelectrochemical Properties[J]. Appl Surf Sci,2015,324:532-537. | [24] | Chen H P,Tang N,Chen M,et al. Endothelialization of TiO2 Nanorods Coated with Ultrathin Amorphous Carbon Films[J]. Nanoscale Res Lett,2016,11:145-153. | [25] | Zhao W W,Shan S,Ma Z Y,et al. Acetylcholine Esterase Antibodies on BiOI Nanoflakes/TiO2 Nanoparticles Electrode:A Case of Application for General Photoelectrochemical Enzymatic Analysis[J]. Anal Chem,2013,85(24):11686-11690. | [26] | Yu C M,Gou L L,Zhou X H,et al. Chitosan-Fe3O4 Nanocomposite Based Electrochemical Sensors for the Determination of Bisphenol A[J]. Electrochim Acta,2011,56(25):9056-9063. | [27] | Lin Y Q,Liu K Y,Liu C Y,et al. Electrochemical Sensing of Bisphenol A Based on Polyglutamic Acid/Amino-Functionalised Carbon Nanotubes Nanocomposite[J]. Electrochim Acta,2014,133:492-500. | [28] | Hu L S,Fong C C,Zhang X M,et al. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A[J]. Environ Sci Technol,2016,50(8):4430-4438. |
|