[1] | Tarascon J M,Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature,2001,414:359-367. | [2] | Simon P,Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater,2008,7:845-854. | [3] | Bruce P G,Freunberger S A,Hardwick L J,et al.Li-O2 and Li-S Batteries with High Energy Storage[J]. Nat Mater,2011,11:19-29. | [4] | Liu K,Zhang X,Meng X,et al.Constraining the Coordination Geometries of Anthanide Centers and Magnetic Building Blocks in Frameworks:A New Strategy for Molecular Nanomagnets[J]. Chem Soc Rev,2016,5(9):2423-2439. | [5] | Long J R,Yaghi O M. The Pervasive Chemistry of Metal-Organic Frameworks[J]. Chem Soc Rev,2009,38(5):1213-1214. | [6] | Liu K,Shi W,Cheng P. Toward Heterometallic Single-Molecule Magnets:Synthetic Strategy, Structures and Properties of 3d-4f Discrete Complexes[J]. Coord Chem Rev,2015,289/290:74-122. | [7] | Sun J K,Xu Q. Functional Materials Derived from Open Framework Templates/Precursors:Synthesis and Applications[J]. Energy Environ Sci,2014,7(7):2071-2100. | [8] | Xia W,Mahmood A,Zou R,et al.Metal Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion[J]. Energy Environ Sci,2015,8(7):1837-1866. | [9] | Li G,Yang H,Li F,et al.Facile formation of a Nanostructured NiP2@C Material for Advanced Lithium-Ion Battery Anode Using Adsorption Property of Metal-Organic Framework[J]. J Mater Chem A,2016,4(24):9593-9599. | [10] | Peng B,Chen J. Functional Materials with High-Efficiency Energy Storage and Conversion for Batteries and Fuel Cells[J]. Coord Chem Rev,2015,253(23/24):2805-2813. | [11] | Li X X,Cheng F Y,Zhang S N,et al.Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1,3,5-benzenetribenzoate)2[J]. J Power Sources,2006,160(1):542-547. | [12] | Saravanan K,Nagarathinam M,Balaya P,et al.Lithium Storage in a Metal-Organic Framework with Diamondoid Topology-A Case Study on Metal Formats[J]. J Mater Chem,2010,20(38):8329-8335. | [13] | Liu Q,Yu L,Wang Y,et al.Manganese-Based Layered Coordination Polymer:Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries[J]. Inorg Chem,2013,52(6):2817-2822. | [14] | Nie P,Shen L F,Luo H F,et al.Prussian Blue Analogues:A New Class of Anode Materials for Lithium Ion Batteries[J]. J Mater Chem A,2014,2(16):5852-5857. | [15] | Gou L,Hao L,Shi Y,et al.One-pot Synthesis of a Metal-Organic Framework as an Anode for Li-Ion Batteries with Improved Capacity and Cycling Stability[J]. J Solid State Chem,2014,210(1):121-124. | [16] | An T,Wang Y,Tang J,et al.A Flexible Ligand-Based Wavy Layered Metal-Organic Framework for Lithium-Ion Storage[J]. J Colloid Interface Sci,2015,445:320-325. | [17] | Lin Y,Zhang Q,Zhao C,et al.An Exceptionally Stable Functionalized Metal-Organic Framework for Lithium Storage[J]. Chem Commun,2015,51(4):697-699. | [18] | Li G,Yang H,Li F,et al.A Coordination Chemistry Approach for Lithium-Ion Batteries:The Coexistence of Metal and Ligand Redox Activities in a One Dimensional Metal-Organic Material[J]. Inorg Chem,2016,55(10):4935-4940. | [19] | Li G,Li F,Yang H,et al.Graphene Oxides Doped MIL-101(Cr) as Anode Materials for Enhanced Electrochemistry Performance of Lithium Ion Battery[J]. Inorg Chem Commun,2016,64:63-66. | [20] | Han X,Yi F,Sun T,et al.Synthesis and Electrochemical Performance of Li and Ni 1,4,5,8-Naphthalenetetracarboxylates as Anodes for Li-ion Batteries[J]. Electrochem Commun,2012,25:136-139. | [21] | Dong C,Xu Li. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries[J]. ACS Appl Mater Interfaces,2017,9(8):7160-7168. | [22] | Song H,Shen L,Wang J,et al.Reversible Lithiation Delithiation Chemistry in Cobalt Based Metal-Organic Framework Nanowire Electrode Engineering for Advanced Lithium-Ion Batteries[J]. J Mater Chem A,2016,4(40):15411-15419. | [23] | Li T,Hu X,Lou H,et al.Reversible Lithium Storage in Manganese and Cobalt 1,2,4,5-Benzenetetracarboxylate Metal-Organic Framework with High Capacity[J]. RSC Adv,2016,6(66):61319-61324. | [24] | Ge D,Peng J,Qu G,et al.Nanostructured Co(Ⅱ)-based MOFs as Promising Anodes for Advanced Lithium Storage[J]. New J Chem,2016,40(11):9238-9244. | [25] | Wang Y,Zhang M,Li S,et al.Diamondoid-Structured Polymolybdate-Based Metal Organic Frameworks as High-Capacity Anodes for Lithium-Ion Batteries[J]. Chem Commun,2017,53(37):5204-5207. | [26] | Li C,Hu X,Lou X,et al.Bimetallic Coordination Polymer as a Promising Anode Material for Lithium-Ion Batteries[J]. Chem Commun,2016,52(10):2035-2038. | [27] | Shen L,Song H,Wang C,et al.Metal-Organic Frameworks Triggered High-Efficiency Li Storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries[J]. Electrochim Acta,2017,235:595-603. | [28] | Li S L,Xu Q. Metal Organic Frameworks as Platforms for Clean Energy[J]. Energy Environ Sci,2013,6(6):1656-1671. | [29] | XU Chao,CHEN Sheng,WANG Xin. Progress in the Chemistry of Materials Based on Graphene[J]. Chinese J Appl Chem,2011,28(1):1-9(in Chinese). 徐超,陈胜,汪信. 基于石墨烯的材料化学进展[J]. 应用化学,2011,28(1):1-9. | [30] | Morozan A,Jaouen F. Metal-Organic Frameworks for Electrochemical Applications[J]. Energy Environ Sci,2013,5(11):9269-9290. | [31] | XIE Zhigang. Electrochemical Performance of Cathode Material LiFePO4 of Lithium Ion Batteries[J]. Chinese J Appl Chem,2007,24(2):238-240(in Chinese). 谢志刚. 锂离子电池正极材料LiFePO4电化学性能[J]. 应用化学,2007,24(2):238-240. | [32] | Wang L,Han Y,Feng X,et al.Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors[J]. Coord Chem Rev,2015,307:361-381. | [33] | Ferey F,Millange M,Morcrette C,et al.Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties[J]. Angew Chem Int Ed,2007,46(18):3259-3263. | [34] | Fateeva A,Horcajada P,Devic T,et al.Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid[J]. Eur J Inorg Chem,2010,24:3789-3794. | [35] | Nguyen T L,Devic T,Mialane P,et al.Reinvestigation of the MIL(M=Ni,Co)/TetraThiafulvaleneTetraCarboxylate System Using High-Throughput Methods:Isolation of a Molecular Complex and Its Single-Crystal-to-Single-Crystal Transformation to a Two-Dimensional Coordination Polymer[J]. Inorg Chem,2010,49(22):10710-10717. | [36] | Nagarathinam M,Saravanan K,Phua E J,et al.Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries[J]. Angew Chem Int Ed,2012,51(24):5866-5870. | [37] | Zhang Z Y,Yoshikawa H,Awaga K. Monitoring the Solid-State Electrochemistry of Cu(2,7-AQDC)(AQDC=Anthraquinone Dicarboxylate) in a Lithium Battery:Coexistence of Metal and Ligand Redox Activities in a Metal-Organic Framework[J]. J Am Chem Soc,2014,136(46):16112-16115. | [38] | Wang Z Q,Li X,Yang Y,et al.Highly Dispersed β-NiS Nanoparticles in Porous Carbon Matrices by a Template Metal-Organic Framework Method for Lithium-Ion Cathode[J]. J Mater Chem A,2014,2(21):7912-7916. | [39] | Shin J,Kim M,Cirera J,et al.MIL-101(Fe) as a Lithium-Ion Battery Electrode Material:A Relaxation and Intercalation Mechanism During Lithium Insertion[J]. J Mater Chem A,2015,3(8):4738-4744. | [40] | Peng Z,Yi X,Liu X,et al.Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability[J]. ACS Appl Mater Interfaces,2016,8(23):14578-14585. | [41] | Ma Y F,Chen Y S. Three-dimensional Graphene Networks:Synthesis, Properties and Applications[J]. Natl Sci Rev,2015,2(1):40-53. | [42] | Xu X D,Cao R G,Jeong S,et al.Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries[J]. Nano Lett,2012,12(9):4988-4991. | [43] | Zheng F C,He M N,Yang Y,et al.Nano Electrochemical Reactors of Fe2O3 Nanoparticles Embedded in Shells of Nitrogen-Doped Hollow Carbon Spheres as High-Performance Anodes for Lithium-Ion Batteries[J]. Nanoscale,2015,7(8):3410-3417. | [44] | Guo H,Li T T,Chen W W. General Design of Hollow Porous CoFe2O4 Nanocubes from Metal Organic Frameworks with Extraordinary Lithium Storage[J]. Nanoscale,2014,6(24):15168-15174. | [45] | Li C,Chen T,Xu W,et al.Mesoporous Nanostructured Co3O4 Derived from MOF Template:A High-Performance Anode Material for Lithium-Ion Batteries[J]. J Mater Chem A,2015,3(10):5585-5591. | [46] | Shao J,Wan Z M,Liu H M,et al.Metal Organic Frameworks-Derived Co3O4 Hollow Dodecahedrons with Controllable Interiors as Outstanding Anodes for Li Storage[J]. J Mater Chem A,2014,2(31):12194-12200. | [47] | Wu R B,Qian X K,Yu F,et al.MOF-Templated Formation of Porous CuO Hollow Octahedra for Lithium-Ion Battery Anode Materials[J]. J Mater Chem A,2013,1(37):11126-11129. | [48] | Banerjee A,Singh U,Aravindan V,et al.Synthesis of CuO Nanostructures from Cu-based Metal Organic Framework(MOF-199) for Application as Anode for Li-ion Batteries[J]. Nano Energy,2013,2(6):1158-1163. | [49] | Hu L,Huang Y M,Zhang F P,et al.CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal-Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale,2013,5(10):4186-4190. | [50] | Pang H C,Guan B,Sun W W,et al.Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries[J]. Electrochim Acta,2016,213:351-357. | [51] | Guo W X,Sun W W,Wang Y. Multilayer CuO@NiO Hollow Spheres:Microwave-Assisted Metal-Organic Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage[J]. ACS Nano,2015,9(11):11462-11471. | [52] | Wu L L,Wang Z,Long Y,et al.Multishelled NixCo3-xO4 Hollow Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Small,2017,13(17):1604270-1604277 | [53] | Wang M H,Yang H,Zhou X L,et al. Rational Design of SnO2@C Nanocomposites for Lithium Ion Batteries by Utilizing Adsorption Properties of MOFs[J]. Chem Commun,2016, 52(4):717--720. | [54] | Li F C,Du J,Yang H,et al.Nitrogen-Doped-Carbon-Coated SnO2 Nanoparticles Derived from a SnO2@MOF Composite as a Lithium Ion Battery Anode Material[J]. RSC Adv,2017,7(32):20062-20067. | [55] | Wang Z Q,Li X,Xu H,et al.Porous Anatase TiO2 Constructed from a Metal-Organic Framework for Advanced Lithium-Ion Battery Anodes[J]. J Mater Chem A,2014,2(31):12571-12575. | [56] | Yang S J,Nam S,Kim T,et al.Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal-Organic Framework[J]. J Am Chem Soc,2013,135(20):7394-7397. | [57] | Zuo L,Chen S H,Wu J F,et al.Facile Synthesis of Three-Dimensional Porous Carbon with High Surface Area by Calcining Metal-Organic Framework for Lithium-Ion Batteries Anode Materials[J]. RSC Adv,2014,4(106):61604-61610. | [58] | Zheng S,Li X,Yan B,et al.Transition-Metal(Fe,Co,Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv Energy Mater,2017-2-21[2017-5-16].http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602733/epdf.[published online ahead of print] |
|