[1] | Lewis N S,Nocera D G. Powering the Planet:Chemical Challenges in Solar Energy Utilization[J]. Proc Nat Acad Sci USA,2006,103(43):15729-15735. | [2] | Kanan M W,Nocera D G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+[J]. Science,2008,321(5892):1072-1075. | [3] | Duan L,Bozoglian F,Mandal S,et al.A Molecular Ruthenium Catalyst with Water-Oxidation Activity Comparable to that of Photosystem II[J]. Nat Chem,2012,4(5):418-423. | [4] | Concepcion J J,Jurss J W,Brennaman M K,et al.Making Oxygen with Ruthenium Complexes[J]. Acc Chem Res,2009,42(12):1954-1965. | [5] | McDaniel N D,Coughlin F J,Tinker L L,et al. Cyclometalated Iridium(Ⅲ) Aquo Complexes: Efficient and Tunable Catalysts for the Homogeneous Oxidation of Water[J]. J Am Chem Soc,2008,130(1):210-217. | [6] | Cao R,Ma H,Geletii Y V,et al.Structurally Characterized Iridium(Ⅲ)-Containing Polytungstate and Catalytic Water Oxidation Activity[J]. Inorg Chem,2009,48(13):5596-5598. | [7] | Savini A,Bellachioma G,Ciancaleoni G,et al.Iridium(Ⅲ) Molecular Catalysts for Water Oxidation:The Simpler the Faster[J]. Chem Commun,2010,46(48):9218-9219. | [8] | Wang W,Zhao Q,Dong J,et al.A Novel Silver Oxides Oxygen Evolving Catalyst for Water Splitting[J]. Int J Hydrogen Energy,2011,36(13):7374-7380. | [9] | Zhao Q,Yu Z,Yuan W,et al.A WO3/Ag-Bi Oxygen-Evolution Catalyst for Splitting Water under Mild Conditions[J]. Int J Hydrogen Energy,2012,37(18):13249-13255. | [10] | Zhao Q,Yu Z,Hao G,et al.Modulated Crystalline Ag-Ci Oxygen-Evolving Catalysts for Electrocatalytic Water Oxidation[J]. Int J Hydrogen Energy,2014,39(3):1364-1370. | [11] | Santoni M P,La Ganga G,Nardo V M,et al.The Use of a Vanadium Species as a Catalyst in Photoinduced Water Oxidation[J]. J Am Chem Soc,2014,136(23):8189-8192. | [12] | Zaharieva I,Chernev P,Risch M,et al.Electrosynthesis, Functional, and Structural Characterization of a Water-Oxidizing Manganese Oxide[J]. Energy Environ Sci,2012,5(5):7081-7089. | [13] | Takashima T,Hashimoto K,Nakamura R. Inhibition of Charge Disproportionation of MnO2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions[J]. J Am Chem Soc,2012,134(44):18153-18156. | [14] | Yamaguchi A,Inuzuka R,Takashima T,et al. Regulating Proton-Coupled Electron Transfer for Efficient Water Splitting by Manganese Oxides at Neutral pH[J]. Nat Commun,2014,5:DOI: | [15] | Jin K,Park J,Lee J,et al.Hydrated Manganese(Ⅱ) Phosphate (Mn(3)(PO(4))(2)·3H(2)O) as a Water Oxidation Catalyst[J]. J Am Chem Soc,2014,136(20):7435-7443. | [16] | Wiechen M,Berends H M,Kurz P. Water Oxidation Catalysed by Manganese Compounds:from Complexes to ‘Biomimetic Rocks’[J]. Dalton Trans,2012,41(1):21-31. | [17] | Coggins M K,Zhang M T,Vannucci A K,et al.Electrocatalytic Water Oxidation by a Monomeric Amidate-Ligated Fe(Ⅲ)-Aqua Complex[J]. J Am Chem Soc,2014,136(15):5531-5534. | [18] | Hamann T W. Splitting Water with Rust:Hematite Photoelectrochemistry[J]. Dalton Trans,2012,41(26):7830-7834. | [19] | Klahr B,Gimenez S,Fabregat-Santiago F,et al.Electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes[J]. Energy Environ Sci,2012,5(6):7626-7636. | [20] | Wu Y,Chen M,Han Y,et al.Fast and Simple Preparation of Iron-Based Thin Films as Highly Efficient Water-Oxidation Catalysts in Neutral Aqueous Solution[J]. Angew Chem Int Ed,2015,127(16):4952-4957. | [21] | Bloor L G,Molina P I,Symes M D,et al.Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts that Self-Assemble in Situ[J]. J Am Chem Soc,2014,136(8):3304-3311. | [22] | Joya K S,Takanabe K,de Groot H J M. Surface Generation of a Cobalt-Derived Water Oxidation Electrocatalyst Developed in a Neutral HCO3-/CO2 System[J]. Adv Energy Mater,2014,4(16):DOI: | [23] | Dinca M,Surendranath Y,Nocera D G. Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions[J]. Proc Natl Acad Sci USA,2010,107(23):10337-10341. | [24] | Joya K S, Joya Y F, de Groot H J M. Ni-Based Electrocatalyst for Water Oxidation Developed in-Situ in a HCO3-/CO2 System at Near-Neutral pH[J]. Adv Energy Mater,2014,4(9):105-110. | [25] | Gao M,Sheng W,Zhuang Z,et al.Efficient Water Oxidation Using Nanostructured Alpha-Nickel-Hydroxide as an Electrocatalyst[J]. J Am Chem Soc,2014,136(19):7077-7084. | [26] | Chen Z F, Glasson C R K, Holland P L, et al. Electrogenerated Polypyridyl Ruthenium Hydride and Ligand Activation for Water Reduction to Hydrogen and Acetone to Iso-propanol[J]. Phys Chem Chem Phys,2013,15(24):9503-9507. | [27] | Zhang T,Wang C,Liu S,et al.A Biomimetic Copper Water Oxidation Catalyst with Low Overpotential[J]. J Am Chem Soc,2014,136(1):273-281. | [28] | Zhao Q,Hao G,Yuan W,et al.Novel Copper Oxides Oxygen Evolving Catalyst in Situ for Electrocatalytic Water Splitting[J]. Electrochim Acta,2015,152:280-285. | [29] | Trotochaud L,Ranney J K,Williams K N,et al.Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution[J]. J Am Chem Soc,2012,134(41):17253-17261. | [30] | Louie M W,Bell A T. An Investigation of Thin-Film Ni-Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen[J]. J Am Chem Soc,2013,135(33):12329-12337. | [31] | Chen J Y,Miller J T,Gerken J B,et al.Inverse Spinel NiFeAlO4 as a Highly Active Oxygen Evolution Electrocatalyst:Promotion of Activity by a Redox-Inert Metal Ion[J]. Energy Environ Sci,2014,7(4):1382-1386. | [32] | Elizarova G L,Matvienko L G,Lozhkina N V,et al.Homogeneous Catalysts for Dioxygen Evolution from Water Oxidation of Water by Trisbipyridylruthenium(Ⅲ) in the Presence of Metallophthalocyanines[J]. React Kinet Catal Lett,1981,16(2):285-288. | [33] | Ellis W C, McDaniel N D, Bernhard S, et al. Fast Water Oxidation Using Iron[J]. J Am Chem Soc,2010,132(32):10990-10991. | [34] | Fillol J L,Codolà Z,Garcia-Bosch I,et al.Efficient Water Oxidation Catalysts Based on Readily Available Iron Coordination Complexes[J]. Nat Chem,2011,3(10):807-813. | [35] | Hoffert W A,Mock M T,Appel A M,et al.Incorporation of Hydrogen-Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water-Oxidation Catalysts[J]. Eur J Inorg Chem,2013,2013(22/23):3846-3857. | [36] | Liu Y,Xiang R,Du X,et al.An Efficient Oxygen Evolving Catalyst Based on a μ-O Diiron Coordination Complex[J]. Chem Commun,2014,50(84):12779-12782. | [37] | Tan P,Kwong H K,Lau T C. Catalytic Oxidation of Water and Alcohols by a Robust Iron(Ⅲ) Complex Bearing A Cross-Bridged Cyclam Ligand[J]. Chem Commun,2015,51(61):12189-12192. | [38] | Chemelewski W D,Lee H C,Lin J F,et al.Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting[J]. J Am Chem Soc,2014,136(7):2843-2850. | [39] | Du X,Ding Y,Song F,et al.Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6]27- Based on Abundant Metals[J]. Chem Commun,2015,51(73):13925-13928. | [40] | Corrigan D A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes[J]. J Electrochem Soc,1987,134(2):377-384. | [41] | Trotochaud L,Young S L,Ranney J K,et al.Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts:The Role of Intentional and Incidental Iron Incorporation[J]. J Am Chem Soc,2014,136(18):6744-53. | [42] | Gong M,Li Y,Wang H,et al.An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation[J]. J Am Chem Soc,2013,135(23):8452-8455. | [43] | Lu X,Zhao C. Electrodeposition of Hierarchically Structured Three-dimensional Nickel-Iron Electrodes for Efficient Oxygen Evolution at High Current Densities[J]. Nat Commun,2015, 6:DOI: | [44] | Qiu Y,Xin L,Li W Z. Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni-Fe Nanoparticles in Alkaline Electrolyte[J]. Langmuir,2014,30(26):7893-7901. | [45] | Indra A,Menezes P W,Sahraie N R,et al.Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions:Amorphous Beat Crystalline Cobalt Iron Oxides[J]. J Am Chem Soc,2014,136(50):17530-17536. | [46] | Burke M S,Kast M G,Trotochaud L,et al.Cobalt-Iron(Oxy) Hydroxide Oxygen Evolution Electrocatalysts:The Role of Structure and Composition on Activity,Stability, and Mechanism[J]. J Am Chem Soc,2015,137(10):3638-3648. | [47] | Valdez R,Grotjahn D B,Smith D K,et al.Nanosheets of Co-(Ni and Fe) Layered Double Hydroxides for Electrocatalytic Water Oxidation Reaction[J]. Int J Electrochem Sci,2015,10:909-918. | [48] | Gu Y,Jia D,Peng Y,et al.Hierarchical Porous Co3O4@CoxFe3-xO4 Film as an Advanced Electrocatalyst for Oxygen Evolution Reaction[J]. RSC Adv,2015,5(12):8882-8886. | [49] | Elmaci G,Frey C E,Kurz P,et al.Water Oxidation Catalysis by Birnessite@Iron Oxide Core-Shell Nanocomposites[J]. Inorg Chem,2015,54(6):2734-2741. | [50] | Smith R D,Prevot M S,Fagan R D,et al.Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63. | [51] | Friebel D,Louie M W,Bajdich M,et al.Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting[J]. J Am Chem Soc,2015,137(3):1305-1313. | [52] | Peulon S,Antony H,Legrand L,et al.Thin Layers of Iron Corrosion Products Electrochemically Deposited on Inert Substrates:Synthesis and Behaviour[J]. Electrochim Acta,2004,49(17/18):2891-2899. | [53] | Lu B,Cao D,Wang P,et al.Oxygen Evolution Reaction on Ni-Substituted Co3O4 Nanowire Array Electrodes[J]. Int J Hydrogen Energ,2011,36(1):72-78. | [54] | Liu K,Wang H,Wu Q,et al.Nanocube-Based Hematite Photoanode Produced in the Presence of Na2HPO4 for Efficient Solar Water Splitting[J]. J Power Sources,2015,283(1):381-388. | [55] | Matijević E, Scheiner P, Ferric Hydrous Oxide Sols:Ⅲ Preparation of Uniform Particles by Hydrolysis of Fe(Ⅲ)-Chloride, -Nitrate, and -Perchlorate Solutions[J]. J Colloid Interface Sci, 1978, 63(3):509-524. | [56] | Ishikawa T,Isa R,Kandori K,et al.Influences of Metal Chlorides and Sulfates on the Formation of Beta-FeOOH Particles by Aerial Oxidation of FeCl2 Solutions[J]. J Electrochem Soc,2004,151(11):13586-13594. | [57] | Orlandi M,Caramori S,Ronconi F,et al.Pulsed-Laser Deposition of Nanostructured Iron Oxide Catalysts for Efficient Water Oxidation[J]. ACS Appl Mater Int,2014,6(9):6186-6190. | [58] | Le Formal F,Grätzel M,Sivula K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting[J]. Adv Funct Mater,2010,20(7):1099-1107. | [59] | Tilley S D,Cornuz M,Sivula K,et al.Light-Induced Water Splitting with Hematite:Improved Nanostructure and Iridium Oxide Catalysis[J]. Angew Chem Int Edit,2010,49(36):6405-6408. | [60] | Smith R D L,Prévot M S,Fagan R D,et al. Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis[J]. Science,2013,340(6128):60-63. | [61] | Kim H,Seol M,Lee J,et al.Highly Efficient Photoelectrochemical Hydrogen Generation Using Hierarchical ZnO/WOx Nanowires Cosensitized with CdSe/CdS[J]. J Phys Chem C,2011,115(51):25429-25436. | [62] | Duret A,Gratzel M. Visible Light-Induced Water Oxidation on Mesoscopic Alpha-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis[J]. J Phys Chem B,2005,109(36):17184-17191. | [63] | Khan S U M,Akikusa J. Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes[J]. J Phys Chem B,1999,103(34):7184-7189. | [64] | Jorand Sartoretti C,Alexander B D,Solarska R,et al.Photoelectrochemical Oxidation of Water at Transparent Ferric Oxide Film Electrodes[J]. J Phys Chem B,2005,109(28):13685-13692. | [65] | Lin Y,Zhou S,Sheehan S W,et al.Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting[J]. J Am Chem Soc,2011,133(8):2398-2401. | [66] | Glasscock J A, Barnes P R F, Plumb I C, et al. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si[J]. J Phys Chem C,2007,111(44):16477-16488. | [67] | Chen Z,Concepcion J J,Luo H,et al.Nonaqueous Catalytic Water Oxidation[J]. J Am Chem Soc,2010,132(50):17670-17673. | [68] | Chen Z,Concepcion J J,Hu X,et al.Concerted O Atom-Proton Transfer in the O—O Bond Forming Step in Water Oxidation[J]. Proc Natl Acad Sci USA,2010,107(16):7225-7229. | [69] | Codola Z,Gomez L,Kleespies S T,et al. Evidence for an Oxygen Evolving Iron-Oxo-Cerium Intermediate in Iron-Catalysed Water Oxidation[J]. Nat Commun,2015, 6:DOI: | [70] | Rossmeisl J,Logadottir A,Nørskov J K. Electrolysis of Water on (Oxidized) Metal Surfaces[J]. Chem Phys,2005,319(1):178-184. | [71] | Man I C,Su H Y, Calle‐Vallejo F, et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces[J]. Chem Cat Chem,2011,3(7):1159-1165. | [72] | Betley T A,Wu Q,Van Voorhis T,et al.Electronic Design Criteria for O—O Bond Formation via Metal-Oxo Complexes[J]. Inorg Chem,2008,47(6):1849-1861. | [73] | Mavros M G,Tsuchimochi T,Kowalczyk T,et al.What can Density Functional Theory Tell us about Artificial Catalytic Water Splitting?[J]. Inorg Chem,2014,53(13):6386-6397. | [74] | Goodenough J B,Manoharan R,Paranthaman M. Surface Protonation and Electrochemical Activity of Oxides in Aqueous Solution[J]. J Am Chem Soc,1990,112(6):2076-2082. | [75] | Hong W T,Risch M,Stoerzinger K A,et al.Toward the Rational Design of Non-Precious Transition Metal Oxides for Oxygen Electrocatalysis[J]. Energ Environ Sci,2015,8(5):1404-1427. |
|