Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (7): 1129-1137.DOI: 10.19894/j.issn.1000-0518.210335
• Full Papers • Previous Articles Next Articles
Qing-Fang NIU, Xin AI, Yi-Xuan WANG, Fang-Jiu HE, Bi LUO, Wen-Ting LIANG(), Chuan DONG()
Received:
2021-07-09
Accepted:
2021-10-02
Published:
2022-07-01
Online:
2022-07-11
Contact:
Wen-Ting LIANG,Chuan DONG
About author:
dc@sxu.edu.cnSupported by:
CLC Number:
Qing-Fang NIU, Xin AI, Yi-Xuan WANG, Fang-Jiu HE, Bi LUO, Wen-Ting LIANG, Chuan DONG. Synthesis of Three‑Dimensional Reduced Graphene Oxide/β‑Cyclodextrin Complex and Its Electrochemical Detection of Levofloxacin in Water[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1129-1137.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210335
Fig.4 Nyquist curves (A) and cyclic voltammograms (B) of bare GCE (a), 3D-rGO (b) and 3D-rGO/β-CD (c)modified GCE in 0.1 mol/L PBS (pH= 7.0) containing 5 mmol/L [Fe(CN)6]3-/4- and 0.1 mol/L KCl; modified GCEs in 0.1 mol/L PBS (pH= 3.0) containing 200 μmol/L LEV(C)
Fig.5 (A) Influence of different sweep rates (a. 10 mV/s, b.40 mV/s, c.80 mV/s, d.120 mV/s, e.160 mV/s, f.200 mV/s) on the detection of 2 mmol/L LEV by 3D-rGO/β-CD /GCE; (B) Linear relation between the LEV oxidation peak current (Ip) and the sweep rate (v); (C) Effect of pH on the detection of 2 mmol/L LEV by 3D-rGO/β-CD /GCE; (D) Linear relationship between the LEV oxidation peak potential (Ep) and pH
Fig.7 (A) DPVs of determination towards different concentrations of LEV of 3D-rGO/β-CD modified GCE in 0.1 mol/L PBS(pH=7.0); (B)The calibration curve for the determination of LEV
修饰电极 Modified electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
AgNPs/CeO2?Au/GCE | DPV | 0.03~10.0 | 0.01 | [ |
PoAP/GQD/GCE | DPV | 0.05~100 | 0.01 | [ |
Co/Ni?MOF/GCE | LSV | 0.1~500 | 0.022 | [ |
PoAP/MWCNT/GCE | LSV | 3.0~200 | 3.3 | [ |
CuNPs/rGO/GCE | DPV | 0.1~2.5 | 0.017 | [ |
pABSA/GR/GCE | DPV | 1~600 | 0.33 | [ |
NiO?AgNPs/GCE | SWV | 0.25~100 | 0.027 | [ |
MIP/G?Au/GCE | DPV | 1~100 | 0.53 | [ |
3D?rGO/β?CD/GCE | DPV | 1~150 | 0.33 | This work |
Table 1 Comparison of dif ferently modified electrodes for determination of LEV
修饰电极 Modified electrode | 方法 Method | 线性范围 Linear range/(μmol·L-1) | 检测限 LOD/(μmol·L-1) | 参考文献 Ref. |
---|---|---|---|---|
AgNPs/CeO2?Au/GCE | DPV | 0.03~10.0 | 0.01 | [ |
PoAP/GQD/GCE | DPV | 0.05~100 | 0.01 | [ |
Co/Ni?MOF/GCE | LSV | 0.1~500 | 0.022 | [ |
PoAP/MWCNT/GCE | LSV | 3.0~200 | 3.3 | [ |
CuNPs/rGO/GCE | DPV | 0.1~2.5 | 0.017 | [ |
pABSA/GR/GCE | DPV | 1~600 | 0.33 | [ |
NiO?AgNPs/GCE | SWV | 0.25~100 | 0.027 | [ |
MIP/G?Au/GCE | DPV | 1~100 | 0.53 | [ |
3D?rGO/β?CD/GCE | DPV | 1~150 | 0.33 | This work |
Fig.8 (A) DPV responses of 3D-rGO/β-CD/GCE in 0.1 mol/L PBS (pH =7.0) for 100 μmol/L LEV(a), Ade (b), Glu (c), Asc(d) and the equal mixture of them. (B) Amperometric responses of the 3D-rGO/β-CD/GCE for the addition of 100 μmol/L LEV and 200 μmol/L Asc, Glu, KCl, LEV, Ade and 100 μmol/L LEV in 0.1 mol/L PBS (pH = 7.0)
实际样品 Sample | 加入量 Added/(μmol·L-1) | 检测量 Found/(μmol·L-1) | 回收率 Recovery/% | 相对标准偏差 RSD/% |
---|---|---|---|---|
1 | 5.00 | 5.21 | 104.2 | 2.12 |
2 | 10.00 | 10.08 | 100.8 | 1.83 |
3 | 20.00 | 19.81 | 99.05 | 1.16 |
4 | 50.00 | 49.08 | 98.16 | 1.74 |
5 | 60.00 | 60.15 | 100.25 | 2.98 |
Table 2 Determination of LEV in Fenhe river water with 3D?rGO/β?CD/GCE
实际样品 Sample | 加入量 Added/(μmol·L-1) | 检测量 Found/(μmol·L-1) | 回收率 Recovery/% | 相对标准偏差 RSD/% |
---|---|---|---|---|
1 | 5.00 | 5.21 | 104.2 | 2.12 |
2 | 10.00 | 10.08 | 100.8 | 1.83 |
3 | 20.00 | 19.81 | 99.05 | 1.16 |
4 | 50.00 | 49.08 | 98.16 | 1.74 |
5 | 60.00 | 60.15 | 100.25 | 2.98 |
1 | MARTIN K L, SILVA D, SIMÕES R P, et al. Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation[J]. Electroanalysis, 2018, 30(9): 2066-2076. |
2 | WEN W, ZHAO D M, ZHANG X H, et al. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals[J]. Sens Actuators B: Chem, 2012, 174: 202-209. |
3 | SUYANA P, PRIYANKA G, MIDHUN M. Photoregenerable, bifunctional granules of carbon-doped g-C3N4, as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic[J]. ACS Sustain Chem Eng, 2017, 5(2): 1610-1618. |
4 | CHENG G, WU H, HUANG Y. Simultaneous determination of malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid chromatography/fluorescence detection system[J]. Anal Chim Acta, 2008, 616(2): 230-234. |
5 | ULU S. Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and of loxacin with 2,3,5,6-tetrachloro-p-benzoquinone[J]. Spectrochim Acta Part A, 2009, 72(5): 1038-1042. |
6 | AWADALLAH B, SCHMIDT P, WAHL M. Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies[J]. J Chromatogr A, 2003, 988(1): 135-143. |
7 | MANEL R, BRAHIM M B, SAME Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode[J]. Electroanal Chem, 2017, 794: 175-181. |
8 | XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. |
9 | NIU Z Q, CHEN J, HNG H H,et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv Mater, 2012, 24(30): 4144-4150. |
10 | LIANG W T, RONG Y Q, FAN L F, et al. 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers[J]. J Mater Chem C, 2018, 6(47): 12822-12829. |
11 | LIANG W T, RONG Y Q, FAN L F, et al. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin[J]. Microchim Acta, 2019, 186: 751. |
12 | ABBEHAUSEN C, FORMIGA A L B, SABADINI E, et al. A β-cyclodextrin/siloxane hybrid polymer: synthesis, characterization and inclusion complexes[J]. J Braz Chem Soc, 2010, 21(10): 1867-1876. |
13 | YU G C, JIE K C, HUANG F H. Supramolecular amphiphiles based on host-guest molecular recognition motifs[J]. Chem Rev, 2015, 115: 7240-7303. |
14 | 杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 北京: 国防工业出版社, 211-214. |
YANG X G, WU Q L. Ramam spectroscopy analysis and application[M]. Beijing: National Defence Industry Press, 211-214. | |
15 | ZHAO J, CHEN G, ZHU L, et al. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors[J]. Electrochem Commun, 2011, 13(1): 31-33. |
16 | HUANG Y, KANG Q. Synthesis of conjugates of β-cyclodextrin with polyamidoamine dendrimers and their molecular inclusion interaction with levofloxacin lactate[J]. J Inclusion Phenom Macrocyclic Chem,2012, 72(1/2): 55-61. |
17 | TANG L, TONG Y, ZHENG R. Ag nano-particles and electrospun CeO2-Au composite nanofibers modified glassycarbon electrode for determination of levofloxacin[J]. Sens Actuators B: Chem, 2014, 203: 95-101. |
18 | HUANG J Y, BAO T, HU T X, et al. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots[J]. Microchim Acta, 2017, 184: 127-135. |
19 | JIN Y F, XU G, LI X B, et al. Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin[J]. J Alloys Compd, 2021, 851: 156823. |
20 | WEN W, ZHAO D M, ZHANG X H, et al. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modi-fied electrode and its application for levofloxacin determination inpharmaceuticals[J]. Sens Actuators B: Chem, 2012, 174: 202-209. |
21 | MARTIN K L, SILVA D, SIMO R P, et al. Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation[J]. Electroanalysis, 2018, 30(9): 2066-2076. |
22 | 司晓晶, 朱文菁, 李香, 等. 聚对氨基苯磺酸/石墨烯电化学修饰电极检测药物中氧氟沙星[J]. 应用化学, 2020, 37(6):726-732. |
SI X J, ZHU W J, LI X, et al. Determination of ofloxacin in medicine via poly(p-aminobenzene sulfonic acid)/graphene electrochemical modified electrode[J]. Chinese J Appl Chem, 2020, 37(6): 726-732. | |
23 | LIU C Q, XIE D, LIU P, et al.Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film[J]. Microchim Acta, 2019, 186(1): 21. |
24 | WANG X, SUN G, ROUTH P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem Soc Rev, 2014, 43: 7067-7098. |
[1] | AN Lingling1, LU Maofeng1, DENG Lingling1, DU Jiangyan1,2,3*. Electrochemical Activities of 8-Hydroxydeoxyguanosine in Chitosan/Graphene Modified Glassy Carbon Electrode and Detection of DNA Oxidative Damage [J]. Chinese Journal of Applied Chemistry, 2014, 31(02): 200-205. |
[2] | ZHAO Lu2, DU Jiangyan1,2*. Fabrication of Chloramphenicol Molecular Imprinted Composite Film and Its Electrochemistry [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1212-1217. |
[3] | ZHAO Yongxin, LI Li, WANG Ku, LU Tianhong, YANG Xiaodi*, LI Huihui *. Application of Graphene-chitosan Modified Electrode for the Detection of Pentachlorophenol in Environmental Water [J]. Chinese Journal of Applied Chemistry, 2012, 29(10): 1206-1211. |
[4] | ZHANG Li-Jun, LU Tian-Hong, LI Shi-Yin, DU Jiang-Yan*. Fabrication and Application of CAP-MIP-OAP Film Electrode for Chloramphenical Detection [J]. Chinese Journal of Applied Chemistry, 2011, 28(03): 338-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||